Model Category: Numerical
Image: Model diagram
Catalina-Jemez, INVESTIGATOR, COLLABORATOR
TIMS aims to numerically simulate various physical and chemical processes that occur over the Earth’s terrestrial surface, e.g., exchanges and flows of energy, water, carbon and other chemicals between/within the soil, plants, and air. TIMS will couple process-based surface atmospheric, hydrological, ecological, geomorphic, geochemical models. It is being compiled from existing models that have arisen from individual scientific communities, including
By evaluating and improving TIMS, we will develop a fully-coupled model system that will truly exceed the sum of its parts. TIMS will be evaluated against experimental measure¬ments in LEO and other model ecosystems and used to integrate state-of-science techniques in data assimilation and forward modeling. TIMS will also be assessed against data from natural system environmental measurement campaigns (e.g., critical zone observatories) in order to validate its use in complex terrain where measurements are less dense and made without experimental control.
Currently, TIMS coupled the 3-dimesional water model and the surface energy and mass (water and carbon) transfer scheme and have been tested against measurements of snow, streamflow, surface energy, water, and carbon fluxes exchanging with the atmosphere over energy limited (Niu et al., 2013a) and water-limited catchments (Niu et al., 2013b). The coupled model is further linked to the solute transport model and a soil water chemistry model and is being tested against analytical solutions of multiple species reactive transport and will be tested against Bioshpere 2 LEO measurements.
Currently, TIMS version 1 (TIMS01), which couples CATHY (surface and subsurface flow model) and NoahMP (land surface scheme of energy, water, and carbon exchanges with the atmosphere) is available upon request. We will release TIMS01 with a detailed documentation in August, 2013. Coupling with other model components are under developments.
Camporese M., C. Paniconi, C. M. Putti, S. Orlandini, 2010: Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resour. Res., 46: W02512, doi:10.1029/2008WR007536.
Niu G.-Y., Z. L. Yang, K. E. Mitchell, F. Chen, M. B. Ek, M. Barlage, A. Kumar, K. Manning, D. Niyogi, E. Rosero, M. Tewari, Y. L. Xia, 2011: The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements. J. Geophys. Res., 116: D12109, doi:10.1029/2010JD015139.
Niu, G.-Y., C. Paniconi, P. A., Troch, X. Zeng, M. Durcik, and T. Huxman, 2013a: An integrated modeling framework of catchment-scale ecohydrological processes: 1. Model description and tests over an energy-limited watershed. Ecohydrolog, doi: 10.1002/eco.1362.
Niu, G.-Y., P. A. Troch, C. Paniconi, R. L. Scott, M. Durcik, X. Zeng, T. Huxman, D. Goodrich, and J. Pelletier 2013b: An integrated modeling framework of catchment-scale ecohydrological processes: 2. the role of water subsidy by overland flow on vegetation dynamics. Ecohydrology. doi: 10.1002/eco.1405.
McGuire, L. A., and J. D. Pelletier, 2012: Controls on the spacing and geometry of rill networks on hillslopes: Rainsplash detachment, initial hillslope roughness, and the competition between fluvial and colluvial transport. Journal of Geophysical Research (in review).
Parkhurst, D. L., K. L. Kipp, P. Engesgaard, and S. R. Charlton, 2004: PHAST—A program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions. U.S. Geological Survey Techniques and Methods, 6–A8, 154.
Peters, D. P. C. 2002: Plant species dominance at a grassland-shrubland ecotone: an individual-based gap dynamics model of herbaceous and woody species. Ecological Modelling, 152(1): 5-32.
2014
An integrated modelling framework of catchment-scale ecohydrological processes: 1 Model description and tests over an energy-limited watershed. Niu G.-Y., Paniconi C., Troch P.A., Scott R.L., Durcik M., Zeng X., Huxman T. and Goodrich D.C. (2014): Ecohydrology 7(2): 427–439
2014
An integrated modelling framework of catchment-scale ecohydrological processes: 2 The role of water subsidy by overland flow on vegetation dynamics in a semi-arid catchment. Niu G.-Y., Troch P.A., Paniconi C., Scott R.L., Durcik M., Zeng X., Huxman T. Goodrich D.C., and Pelletier J. (2014): Ecohydrology 7(2): 815–827