ARCHIVED CONTENT: In December 2020, the CZO program was succeeded by the Critical Zone Collaborative Network (CZ Net) ×

Tauge, 2007

Paper/Book

Spatial modeling of coupled hydrologic-biogeochemical processes for the Southern Sierra Critical Zone Observatory

Tague, C. (2007)
Research Gate  

Abstract

One of the primary roles of modeling in critical zone research studies is to provide a framework for integrating field measurements and theory and for generalizing results across space and time. In the Southern Sierra Critical Zone Observatory (SCZO), significant spatial heterogeneity associated with mountainous terrain combined with high inter-annual and seasonal variation in climate, necessitates the use of spatial-temporal models for generating landscape scale understanding and predictions. Science questions related to coupled hydrologic and biogeochemical fluxes within the critical zone require a framework that can account for multiple and interacting processes. One of the core tools for the SCZO will be RHESSYs (Regional hydro-ecologic simulation system). RHESSys is an existing GIS-based model of hydrology and biogeochemical cycling. For the SCZO, we use RHESSys as an open-source, objected oriented model that can be extended to incorporate findings from field-based monitoring and analysis. We use the model as a framework for data assimilation, spatial-temporal interpolation, prediction, and scenario and hypothesis generation. Here we demonstrate the use of RHESSys as a hypothesis generation tool. We show how initial RHESSys predictions can be used to estimate when and where connectivity within the critical zone will lead to significant spatial or temporal gradients in vegetation carbon and moisture fluxes. We use the model to explore the potential implications of heterogeneity in critical zone controls on hydrologic processes at two scales: micro and macro. At the micro scale, we examine the role of preferential flowpaths. At the macro scale we consider the importance of upland-riparian zone connectivity. We show how the model can be used to design efficient field experiments by, a-priori providing quantitative estimate of uncertainty and highlighting when and where measurements might most effectively reduce that uncertainty.

Citation

Tague, C. (2007): Spatial modeling of coupled hydrologic-biogeochemical processes for the Southern Sierra Critical Zone Observatory. Research Gate .