ARCHIVED CONTENT: In December 2020, the CZO program was succeeded by the Critical Zone Collaborative Network (CZ Net) ×

Zaharescu et al., 2017

Paper/Book

Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis

Zaharescu D.G., Burghelea C.I., Dontsova K., Presler J.K., Maier R.M., Huxman T., Domanik K.J., Hunt E.A., Amistadi M.K., Gaddis E.E., Palacios-Menendez M.A., Vaquera-Ibarra M.O. and Chorover J. (2017)
Scientific Reports 7: 43208  

Abstract

(A) REE concentrations in bulk rocks. (B) The concentration of REE in the initial rock substrates normalized to Earth’s upper continental crust average.

(A) REE concentrations in bulk rocks. (B) The concentration of REE in the initial rock substrates normalized to Earth’s upper continental crust average.

The rare earth elements (REE) are increasingly important in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. However, REE distribution in early rock-microbe-plant systems has remained elusive. We tested the hypothesis that REE mass-partitioning during incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, vascular plants (Buffalo grass), and arbuscular mycorrhiza. Pore-water element abundances revealed a rapid transition from abiotic to biotic signatures of weathering, the latter associated with smaller aqueous loss and larger plant uptake. Abiotic dissolution was 39% of total denudation in plant-microbes-mycorrhiza treatment. Microbes incremented denudation, particularly in rhyolite, and this resulted in decreased bioavailable solid pools in this rock. Total mobilization (aqueous + uptake) was ten times greater in planted compared to abiotic treatments, REE masses in plant generally exceeding those in water. Larger plants increased bioavailable solid pools, consistent with enhanced soil genesis. Mycorrhiza generally had a positive effect on total mobilization. The main mechanism behind incipient REE weathering was carbonation enhanced by biotic respiration, the denudation patterns being largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate and mobilization: solid pool ratios, and in the pattern of denudation and uptake.

Citation

Zaharescu D.G., Burghelea C.I., Dontsova K., Presler J.K., Maier R.M., Huxman T., Domanik K.J., Hunt E.A., Amistadi M.K., Gaddis E.E., Palacios-Menendez M.A., Vaquera-Ibarra M.O. and Chorover J. (2017): Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis. Scientific Reports 7: 43208. DOI: 10.1038/srep43208

This Paper/Book acknowledges NSF CZO grant support.