ARCHIVED CONTENT: In December 2020, the CZO program was succeeded by the Critical Zone Collaborative Network (CZ Net) ×

Penprase et al., 2014

Talk/Poster

The effects of rock type and landscape position on solution chemistry of soils in the Biosphere 2 Desert Site of the Santa Catalina Mountains Critical Zone Observatory

Penprase S., Abramson N., LaSharr K., Chorover J. (2014)
Abstract EP23B-3597 presented at 2014 Fall Meeting, AGU, San Francisco, CA, 15-19 Dec.  

Abstract

The interaction of near surface soil water with surrounding rock and soil matter plays a crucial role in determining the chemical composition of biogeological systems. This interaction drives subsurface processes such as erosion, mineralization, and depletion. However, how and why soil pore water chemistry fluctuates based on localized conditions such as rock type and landscape position is not fully understood. This study examines the role these two factors play in altering soil water chemistry by analyzing samples collected from schist and granite field sites within the Biosphere 2 Desert Site of the Santa Catalina Mountains Critical Zone Observatory. We hypothesized that soil water from the schist site would have higher solute concentrations than the granite site because schist is a more weatherable rock and, thus, is more susceptible to chemical erosion. We also hypothesized that soil water from convergent positions would have higher solute concentrations than those from divergent positions due to a longer upgradient flow path. Each field site was situated within a Zero Order Basin (ZOB) with seven Zero Tension Lysimeters (ZTL). At the schist site, there were 3 convergent (SC 1-3) and 4 divergent (SD 1-4) ZTL positions. For the granite site, there were 4 convergent (GC 1-2, 4-5) and 3 divergent (GD 1-3) ZTLs. Samples were collected following rainstorms from July 2011-July 2013. Each solution sample was analyzed for major and trace cations, anions, pH, EC, and organic and inorganic carbon. Comparisons between SC and GC and all schist and all granite are consistent with the hypotheses for multiple elements. Results also indicate higher solute levels for SC relative to SD. Thus, our analyses suggest that rock type and landscape position influence the chemical composition of soil water at these two sites.

 

Citation

Penprase S., Abramson N., LaSharr K., Chorover J. (2014): The effects of rock type and landscape position on solution chemistry of soils in the Biosphere 2 Desert Site of the Santa Catalina Mountains Critical Zone Observatory. Abstract EP23B-3597 presented at 2014 Fall Meeting, AGU, San Francisco, CA, 15-19 Dec..

This Paper/Book acknowledges NSF CZO grant support.