ARCHIVED CONTENT: In December 2020, the CZO program was succeeded by the Critical Zone Collaborative Network (CZ Net) ×

Markewitz, 2000

Paper/Book

Long-term soil potassium availability from a Kanhapludult to an aggrading loblolly pine ecosystem

Markewitz, Daniel, Daniel D.Richter (2000)
Forest Ecology and Management 130 (1-3): 109-129  

Abstract

A long-term (1962 to 1990) forest biogeochemistry study in the southeastern Piedmont of the USA provided estimates of soil K release in response to forest regrowth. We investigated the sources of soil K that buffered the exchangeable K pools during forest growth and we estimated soil K release rates through greenhouse and acid extraction studies for comparison to our field estimate.

In these acid Kanhapludults, derived from granitic-gneiss, the disparity between measured depletions of soil exchangeable K and estimated forest removals indicated a buffering of exchangeable K on the order of 0.31 kmolc ha-1 per year. Non-exchangeable K extracted by boiling with 1 M HNO3 exceeded exchangeable K by up to 40-fold. Non-exchangeable K was not depleted during the three decades of stand growth, however, thus was not the long-term source of exchangeable K buffering. Total K in these soils ranged from 0.4 to 3.8% by weight. Mineralogical data indicated a presence of hydroxy-interlayered vermiculite throughout the upper 4 m of soil for <2 µm clay fraction and a presence of micaceous minerals in the 2 to 45 µm silt fraction. XRD analysis of micaceous flakes extracted from 4 to 8 m in the soil indicated a presence of muscovite mica.

Estimated K releases in the greenhouse and extraction studies were generally consistent with long-term results. The accumulation of K during two rotations of pine seedling growth in the greenhouse exceeded the measured depletions in exchangeable and non-exchangeable K over all soil depths tested by 0.007 to 0.026 cmolc kg-1. Potassium removal by sequential extraction/incubations with 1 mM HCl and 1 mM oxalic acid continued through 24 extractions and K recovered in extract solutions exceeded the sum of depletions in exchangeable and non-exchangeable K pools by 0.001 to 0.028 cmolc kg-1. These excess removals in plant uptake or solution recovery indicate a release of mineral K. Thirty-day extractions with H+-resins in both 1 mM HCl and 1 mM oxalic acid were well fit by the Elovich equation but were not well correlated with plant K uptake in the greenhouse study. The release rate coefficients ranged from 0.012 to 0.025(cmolc kg-1) h-1.

Extrapolations to annual releases of K in the greenhouse and sequential extraction studies were a similar order of magnitude as long-term releases estimated at the long-term Calhoun plots. Surface soil (0 to 15 cm) releases ranged from 0.15 to 0.65 kmolc ha-1per year while deeper soils ranged up to 1.54 kmolc ha-1per year. Results indicate that soils similar to those at Calhoun that contain a similar micaceous and HIV component will be able to supply K at rates adequate to keep pace with demands of forest regrowth even under intensive forest management.

Citation

Markewitz, Daniel, Daniel D.Richter (2000): Long-term soil potassium availability from a Kanhapludult to an aggrading loblolly pine ecosystem. Forest Ecology and Management 130 (1-3): 109-129.