IML, INVESTIGATOR
Landscapes transmit pulses of water, sediment and solutes through the terrestrial environment and network of stream channels. The timing, frequency and magnitude of these pulses depend on inputs of water, energy and rock/soil as well as a multitude of critical zone processes that may modulate the signal. Therefore, the potential for a landscape to generate and transmit these pulses changes over long timescales, primarily as a function of climate and local base level rise or fall. Humans have profoundly altered many critical zone processes that govern these environmental signals, often targeting rate-limiting processes for the purpose of enhancing economic productivity and/or reducing financial risk. These alterations are especially evident in the intensively managed landscapes of the Midwestern US, where vegetation change, soil tillage, and pervasive modifications of the surface and subsurface drainage system have substantially changed water, sediment and nutrient fluxes. Effects, in terms of amplification or damping of environmental signals, are strongly dependent on landscape setting, and often non-linear. Hysteresis and sensitivity may hinder the return to the initial state when perturbations have reached a certain threshold. We draw from multiple examples in the upper Midwestern US to illustrate, at a basic level, the mechanisms by which landscape evolution establishes the template for generation and transmission of environmental signals and furthermore how humans have altered critical zone processes to optimize specific landscape outputs, often at the expense of modifying the rate and/or magnitude of many other landscape outputs. We present a conceptual model and discuss implications for mathematical modeling of water, sediment and nutrient fluxes to guide watershed management and restoration.
Belmont, Patrick (2015): Amplification and Damping of Environmental Signals in Intensively Managed Landscapes. 2015 AGU (American Geophysical Union) Fall Meeting.