ARCHIVED CONTENT: In December 2020, the CZO program was succeeded by the Critical Zone Collaborative Network (CZ Net) ×

Hasenmueller et al., 2015

The Activity of Deep Roots in Bedrock Fractures at the Susquehanna Shale Hills Critical Zone Observatory, USA

Hasenmueller, Elizabeth Ann, Xin Gu, Julie N Weitzman, Thomas S Adams, Gary E Stinchcomb, David M Eissenstat, Susan L Brantley and Jason P Kaye (2015)
H21C-1383 Ecohydrology in the Critical Zone I Posters, presented at 2015 Fall Meeting, AGU, San Francisco, CA, 14-18 Dec.  

Abstract

Many areas in the world are characterized by shallow soils underlain by weathered bedrock, but root-rock interactions and their implications for regolith weathering are poorly understood. To test the role of tree roots in weathering bedrock, we excavated four pits along a catena in a shale-hosted catchment near the Susquehanna Shale Hills Critical Zone Observatory, USA. We measured a variety of physical and chemical properties including: (1) root density, distribution, and respiration rates, (2) soil gas, and (3) soil, rock, and rock fracture sediment elemental compositions, mineralogy, and morphology. As expected, root density declined rapidly with depth; nevertheless, roots were present in rock fractures even in the deepest, least weathered shale sampled (~ 1.8 m). Root density in the shale fractures was highest at the ridge for all depths and decreased 23-fold downslope as soils thickened and in spite of increasing rock fracture density. Root respiration rates (per gram of root) in fractures were comparable to those in augerable soil, with the highest respiration rates for all depths observed at the ridge. We only observed roots in larger shale fractures (> 50 μm) that were coated with sediment. These sediments were mineralogically and geochemically similar to overlying B and C soil horizons with respect to clay composition, total C and N, and potentially mineralizable C. Such similarities indicate that the sediment coatings are likely the result of translocation of soil particles downward into the fractures. However, concentrations of extractable inorganic N were higher in fracture sediments than in surface soils. Shale in contact with deep roots resembled unweathered parent material geochemically. In the bulk soil, depletion profiles (K, Mg, Si, Fe, and Al) relative to unweathered shale reflected characteristic weathering of illite and chlorite to kaolinite. Approximately 50% of soil K and Mg was lost as eroding particles, supporting the idea that fracture sediments are the result of downward transport of soil particles rather than in situ rock weathering. Overall, our data suggest that roots and sediments present in shale fractures down to ~ 1.8 m are qualitatively similar to those in surface soil horizons, with the main difference being that there are simply fewer roots and less sediment in the bedrock fractures.

Citation

Hasenmueller, Elizabeth Ann, Xin Gu, Julie N Weitzman, Thomas S Adams, Gary E Stinchcomb, David M Eissenstat, Susan L Brantley and Jason P Kaye (2015): The Activity of Deep Roots in Bedrock Fractures at the Susquehanna Shale Hills Critical Zone Observatory, USA. H21C-1383 Ecohydrology in the Critical Zone I Posters, presented at 2015 Fall Meeting, AGU, San Francisco, CA, 14-18 Dec..

This Paper/Book acknowledges NSF CZO grant support.