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Research question/objectives

* How do trees utilize water? What is the timing of their
water use? How does soil depth relate to these two
guestions?

 Monitoring of surface and subsurface water budgets in
remote landscapes, with specific attention to moisture
and temperature variability in near surface soils

e Study the interactions between soil hydrology and tree
root water uptake in a forested catchment, as part of a
wider effort to analyze changing ecosystem response
to changing environmental inputs.



Climate Change in the Sierra

 The Sierra Nevada provides water to over 10% of the
U.S. population and about 40% of the runoff for
California as a whole.

* Climate warming will shift the elevation of the rain
snow transition, the seasonal timing of snowmelt
runoff, soil-water dynamics, plant water-use and
growing-season temperatures, thus dramatically
altering the water cycle, weathering processes and
ecosystem function.

 Snowmelt and stream flow timing are already
occurring earlier each spring in response to warming
(as much as +2 2C in recent decades) .




Sierra Climate Change cont.

e This will likely increase the risks of springtime floods and
late summer moisture stress. Increased frequency of multi-
year droughts and higher-intensity rainfall events have
been predicted and may compound the hazards associated
with seasonal shifts.

* Arange of forest disturbances including drought-related
dieback, fire, disease , and background mortality, are
expected to intensify with increasing drought frequency
and severity.

* Short to medium-term effects of climate change (floods
and drought) will interact with long-term processes,
including species shifts, with as yet poorly understood
consequences for ecosystem function and material fluxes



Temperature Predictions
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Precipitation Predictions
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Location

Southern Sierra
CZO is located at
elevations 400-
2700 m, across
the rain-snow
transition, in a
very productive
mixed-conifer
forest, with
extended
measurement
nodes across
various gauged
watersheds.




Conceptual model of project

Feedbacks across time scales - regolith-
atmosphere coupling along elevation transect

Feedbacks across

\\ spatial scales

Subalpine forest
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Broad framework of the research
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Flux tower transect
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Critical Zone Tree-1

Instrumentation

Abies concolor

Critical Zone Tree-2

Ponderosa Pine
Pinus Ponderosa
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Tree Trunk & Canopy Measurements
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Snow tree movie
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Water Storage (cm)
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Spatial patterns of soil water potential at 30 cm soil
depth How do these patterns affect tree ET and canopy stress?
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Various methods of estimating ET

Sap flow
— Sensors must be moved periodically, uncertainty in the low flow range
Flux tower

— Uncertain fetch, uncertain contributions from various community
members

Water content monitoring in the VZ after drainage

— Uncertainty in spatial variability of water content measurements and
texture of soils. Uncertainty in partition between drainage and ET

Calculating fluxes

— Need water potential measurements across a gradient, difficult to
measure accurately, conductivity as a function of water content

Modeling

— Complex model with many parameters, need to couple processes in
the SPAC



Soil Moisture/ Sap Flux (mm/d)

Change in Soil Moisture vs. Sap Flux
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Water balance on regolith Change in storage between
; shallow (S) and deep (D)

soil compartments

__ ASg = Rain + Snowmelt —
ETs— Deep_drainage

= Deep_drainage — ET,
— Streamflow — gw_loss

S—




Sap Flux Daily Sums
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Saprolite-soil interface










Weathering Sequence with Depth
Soil - Saprolite — Saprock — Granitic Bedrock

 —

increasing porosity and water holding capacity

Deep regolith hold significant amounts of water.

Saprolite contains little or no clay minerals.
Saprock is consolidated and holds original rock fabric.
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Raw Scans




Root Modeling of LiDAR data

 Two systems, large
roots and small roots

— Assume axial symmetry

— Calculate root density,
root location relative to
the ground surface and
various soil horizons

— Correlate with changes
in water content from
instrumented tree CZT-1




Root model movie




Future Directions
1. Modeling
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Future Directions
2. Upscaling- Soil depth and water storage

NASA soil moisture
(SMAP satellite) expand
soil moisture monitoring

COSMOS sensors
Depth to bedrock

Better tools for soil depth
assessment

Better understanding of
snow distribution across
the landscape
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Results from surveys of resistivity (A) and seismic refraction (B) along
a transect spanning a forested slope and saturated meadow in
catchment P301. Porosity (C) inferred from P-wave velocity data
assuming vertical variations in velocity stem solely from variations in
porosity. Porosity profile (D) near the CZ tree shows good agreement
between measurements from regolith samples (open circles) and
modeled porosity from the P-wave data (red line), illustrating how
geophysical data can shed light on subsurface water storage
potential.




Future Directions
3. Deep monitoring

* Deep(er) vadose zone monitoring
* Recharge to/into saprolite and bedrock
e Continued root measurements-Expensive!
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The fourth dimension:
The influence of time

* Regolith resonance times 10°-10° years

* Current regolith formation decoupled from
current climate

 Geochemical measurements indicate that the
presence of soil is regulated by bedrock
nutrient content through its influence on
vegetation.



Research directions/interesting questions:
Where are we going with this?

Applicability over larger scales?

Decoupling of scales of species migration and
regolith decomposition

Deeper understanding of late season water
use

If summers are longer and drier, how will the
trees survive? Where will trees survive?
Which trees will survive?
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