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Abstract

Integrated watershed models describe the land-phase of hydrologic cycles
by coupling processes such as canopy interception, infiltration, recharge,
evapotranspiration, overland flow, vadose zone flow, groundwater flow, and
channel routing. This modeling scheme serves as an important strategy for
understanding the moisture redistribution processes across the watershed and
river-basin landscape. For example, the Penn State Integrated Hydrologic Model
(PIHM) has successfully been applied to explain the impacts of antecedent soil
moisture on peak streamflow and timing. However, due to the heavy computational
cost of solving integrated models with complex model structure, efficient parameter
estimation for PIHM is a major computational and algorithmic challenge. The
focus of this dissertation has four main themes: (1) develop an efficient calibration
strategy for PIHM; (2) develop a weighted-objective calibration scheme for multi-
variable distributed parameters (e.g., streamflow, water table depth, and eddy flux
data); (3) test the parameter-estimation process for spatial shallow groundwater
calibration of PIHM using national wetland geospatial data (National Wetland
Inventory: NWI); (4) extend the capabilities of PIHM for linking vegetation
dynamics from an ecosystem model and evaluating the importance of vegetation
growth in water balance studies.
The temporal and geospatial complexity of the data requirements for integrated
and fully coupled catchment models increases the difficulty of applying parameter
optimization in real watershed applications. In this research, a new strategy known
as partition calibration was proposed to enable the automatic calibration of PIHM.
The concept can be thought of as a divide-and-conquer algorithm, where the
parameter space is divided into two or more sub-problems that can be solved
sequentially. The first partition of the parameter vector is divided according to
the two dominant time-scales of catchment hydrological processes: 1) event-scale
hydrologic response parameters; and 2) seasonal-scale response parameters. Once
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divided, the event-scale group parameters and seasonal-scale group parameters
are then calibrated sequentially. The second partition focused on the separation
of the total calibration objective onto multiple targets to predict each observed
hydrological variable. The informativeness of each calibration target was defined
in terms of a weighted objective function. Application of the scheme suggested
the use of an informativeness-based partitioning of streamflow, groundwater, and
ET parameters and demonstrated that partition calibration was superior to both
single-objective calibration and un-weighted average multi-objective calibration.
Applications of the PIHM were found to be efficient with the partition calibration
strategy. The first PIHM application involves characterization of the freshwater
wetland response to climate change at seven catchments within the Susquehanna
River Basin. In this case, streamflow time series and geospatial mapping of
wetlands in the National Wetland Inventory (NWI) were used to calibrate the
model to capture the distributed groundwater and streamflow dynamics. After
calibration, the model was applied to an IPCC climate change scenario (2046-
2065), and the modeling results suggested that upland groundwater levels were
more sensitive to climate change than water levels of wetlands in lower parts of
the catchment, as expected. In the final part of this research, long-term modeling
of PIHM compared the role of fixed seasonal variation in LAI (Leaf Area Index)
and a fully dynamic vegetation growth model. The community ecosystem model
BIOME-BGC was linked to PIHM to test the hypothesis that default monthly
LAI values are sufficient to represent long-term water balances in a catchment. By
comparing model results for fixed LAI and dynamic LAI, it was demonstrated that
fixed LAI is not sufficient for capturing interannual variability of forest vegetation
and water flow dynamics, especially as it relates to the onset and growth of forest.
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Chapter 1
Introduction

1.1 Motivation

The terrestrial water cycle is the medium for the exchanges of energy, water

and momentum through biogeospheric components: animals, plants, micro-

organisms, soils, rocks, and atmosphere [Smith et al.(2008)]. On the one hand,

local moisture availability supports the diversity and distribution of the types of

regional vegetation, and controls net primary productivity. The ecohydrological

approach has been widely accepted as new methodology and solution for complex

environmental systems, which helps us to improve forecasts of environmental

change [Newman et al.(2006)]. However, the different time and space scale that

characterizes the ecosystem and hydrological cycles is one of the major challenges

for integrated modeling. Recently, with advances in computing power, a new

generation of physics-based hydrologic response models attempts to simulate

coupled hydrological processes over a range of spatial and temporal scales [Qu

& Duffy(2007), Mirus et al.(2011)]. These comprehensive physics-based models

were suggested as a strong foundation for linking research disciplines such as

hydroecology and hydrogeomorphology [Loague et al.(2006)]. Nonetheless, limited

research has been conducted using physics-based hydroecological models. This is

largely due to the model requirement of large amounts of geospatial and temporal

data, as well as the model-data computational cost. Furthermore, the calibration of

such complex models greatly expands the computational requirement. Therefore,

an important task for physics-based ecohydrological model development is to
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design calibration tools, to simplify model application workflow, and to extend

simulation results and modules for specific ecohydrological researches. It is also

my expectation that fully coupled, physics-based ecohydrological models will

provide an important new tool for advancing Earth system science and engineering

applications.

1.2 Background and Scope

1.2.1 Watershed Hydrologic Models

Hydrological simulation has been important in the development of water resources

planning and management applications in different disciplines [Praskievicz

& Chang(2009), Asbjornsen et al.(2011), Barthel et al.(2012)]. Quantitative

description of the hydrologic cycle is still the major task of hydrological

modelers. Originated with component models, the hydrological simulation is now

dominated by verity types of watershed models [Singh & Frevert(2002), Kampf &

Burges(2007)]. Recently, a number of physics-based, fully coupled hydrological

models have been proposed due to advances in computational power [Mirus

et al.(2011)]. Such models have the advantage of understanding spatio-temporal

surface-subsurface water interactions, which implicitly solve a system of equation

[Loague et al.(2006)]. Specifically, physics-based models include comprehensive

representation of hydrological processes and the spatial hydrological properties of

a watershed. Therefore, the simulation includes different rainfall runoff generation

mechanisms (Horton overland runoff, Dunne overland runoff, and subsurface flow)

[Qu & Duffy(2007)], and the results are spatially heterogeneous and temporally

high resolution [Mirus et al.(2011)]. These characteristics of physics-based models

will not only benefit hydrological studies but also provide a strong foundation for

ecological and biogeochemical research [Loague et al.(2006)].

Despite their utility, the applications of these physics-based models (Table 1.1)

are limited because the models are computational expensive, because they require

large amounts of geospatial data for parameterization, and because there is a

lack of effective calibration strategies [Mirus et al.(2011)]. Most applications were



3

reported at the small experimental catchment scale. For example, the area of the

R-5 catchment simulated by the Integrated Hydrology Mode (InHM) for six years,

is 0.1 km2 [Heppner et al.(2007)]. The Susquehanna-Shale Hills Critical Zone

Observatory (SSHCZO) watershed is a 0.08km2 experimental catchment of the

application site of the Penn State Integrated Hydrologic Model (PIHM) [Qu &

Duffy(2007)]. A headwater area of the Sakai River of 2.5km2 was simulated with

a spatially-distributed, physics-based model of composite dimensions, consisting

of a 3-D variably-saturated groundwater flow sub-model, a 2-D overland flow

sub-model, and 1-D river flow sub-model [Takeuchi et al.(2010)]. In addition,

few literatures have reported the calibration strategy of such complex models.

Hence, trial and error techniques for tuning the parameters according to the

model sensitivity are still the primary choices to fit the runoff response [Takeuchi

et al.(2010), Li et al.(2008)]. Without a comprehensive spatial calibration, even

a successful application could not comprehensively demonstrate the advantage of

physics-based models [Kollet & Maxwell(2008)].
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1.2.2 Biogeochemical Processes of Hydrological Systems

It is often assumed that biogeochemical processes change relatively slowly in

comparison to rainfall-runoff hydrological responses. If this assumption is true,

it is convenient to say that the biophysical properties of soil and vegetation

are static or that they can be assigned a fixed seasonal pattern during the

hydrological simulation. On the other hand, we also know that forest ecosystem

and catchment hydrologic response form an integrated system in which both

short and long time scale processes may interact (e.g., soil moisture-groundwater

redistribution), making static or fixed assumptions less likely. It seems important

then that assumptions about biogeochemical and hydrological processes be tested

in some way. Although calibrated parameters could lead to adequate hydrological

model performance, it is safe to say that vegetation and soil biophysical

contributions to hydrological processes are still inadequately understood [Brolsma

& Bierkens(2007), Smucker & Hopmans(2007), Miller et al.(2010)].

Models simulating biogeochemical processes vary dramatically according to

temporal scales, spatial complexity, and mechanistic detail. Based on the

mechanism, there are two groups of models: the statistic empirical model and

process-based model. Although empirical models are still being applied in vast

majority of forest managements [Mäkelä et al.(2008), Wang et al.(2009)], growing

process-based models have emerged to develop a better understanding of ecosystem

functions [Smith et al.(2001), Hanson et al.(2004)]. Ecosystem models simulate

from individual-level [Post & Pastor(1996)] to stand-level [Hanson et al.(2004)]

to global-level [Coe et al.(2000)]. Relating to the interactions with watershed

hydrologic processes, a stand-level ecosystem model is the optimum match. We

therefore focused on the stand-level, process-based ecosystem models. In general,

stand-level, process-based ecosystem models explicitly calculate the carbon and

water fluxes at a time step varying from an hour to a month at a given point,

which is then scaled on a per-square-meter basis [Hanson et al.(2004)]. The

carbon, nitrogen, and water pools are stored in plants and soil, which are divided

into several parts, depending on the model structure. The water cycle is usually

moderately represented in a soil water balance bucket model, which is mainly

driven by the meteorological data. The carbon and nitrogen fluxes are determined

by eco-physiological characteristics of the plant function type (PFT) [Tague &
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Band(2004)].

Due to the one-dimensional hydrologic estimation, most models demonstrate the

inability to capture the day-to-day dynamics of changes of soil water content

[Hanson et al.(2004)]. Therefore, the effect of soil moisture on physiological

processes is not correctly represented, which impacts the model’s performance of

net ecosystem carbon exchange (NEE) under extreme soil water conditions [Hanson

et al.(2004)]. Comparative studies suggested that models have different strengths,

and improvements should be made to complete simulation of all the dynamics

of the coupled water cycle and carbon cycle [Morales et al.(2005), Siqueira

et al.(2006), Ichii et al.(2010)].

Coupling hydrological and biogeochemical model is one of the major solutions

to understand the multi-scale of interactions between water cycle and carbon

cycle [Morales et al.(2005)]. Fore example, an ecosystem model was linked with a

hydrological model to test the sensitivity of the ecosystem model to hydrology and

temperature [Wolf et al.(2008)]. The results suggested that soil moisture and soil

temperature are the most sensitive factors driving carbon fluxes, particularly soil

carbon emissions [Wolf et al.(2008)]. The vegetation simulation was improved in

hydrologic transport model SWAT (Soil Water Assessment Tool) by implementing

a field-scale plant model [Kiniry et al.(2008)]. Increasing studies showed that

only complete representation of connected ecologic and hydrologic processes could

comprehensively improve the understanding of the dynamics of ecohydrosystem

[Yi et al.(2009)].

The Regional Hydro-Ecological Simulation System (RHESSys) is a hydro-ecologic

model designed to simulate integrated water, carbon, and nutrient cycling and

transport over spatially variable terrain [Tague & Band(2004)]. RHESSys

explicitly couples the Biome-BGC for ecological processes and TOPMODEL for

hydrological processes at a daily time scale. The model structure is based on its

hierarchical landscape representation from basins to hillslopes, zones, and patches,

which aggregate the fluxes of processes in different scales.

For the time scale of stand-level, processes-based models, most models use an

hourly simulation time-step [Hanson et al.(2004)]. Higher temporal resolution

and detailed model structure will provide better output in agreement with the

observations [Amthor et al.(2001), Hanson et al.(2004)]. Among watershed
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modeling studies, using physics-based distributed models has exhibited advantages

in capturing multi-scale hydrological dynamics [Mirus et al.(2011)]. It is therefore

necessary for future modeling studies to improve coupling strategies in order to

accurately understand the ecohydrological dynamics in terrestrial water-carbon-

nitrogen cycling.

1.2.3 A Formal Strategy for the Complex Watershed

Modeling - Divide and Conquer (D&C)

Recent decades have seen advances in comprehensive, high-resolution geospatial

data products, which have encouraged the development of distributed integrated

model applications. However, as the modeling framework built up diverse

processes, the model applications turned out to be a sophisticated problem

involving distributed parameterization, model calibration, and model discrepancy

identification, etc. An efficient solution strategy for complex watershed modeling is

the divide-and-conquer strategy. The divide-and-conquer strategy solves a problem

by:

1. Breaking it into sub-problems that are themselves smaller instances of the

same type of problem;

2. Recursively solving these sub-problems; and

3. Appropriately combining their answers.

The real work is done piecemeal, in three different places: in the partitioning of

problems into sub-problems; at the very tail end of the recursion, when the sub-

problems are so small that they are solved outright; and in the gluing together

of partial answers. These partial answers are held together and coordinated

by the algorithm’s core recursive structure. In computer science, divide and

conquer (D&C) is an important algorithm design paradigm based on multi-

branched recursion. A D&C algorithm works by recursively breaking down a

problem into two or more sub-problems of the same (or related) type, until these

become simple enough to be solved directly. The solutions to the sub-problems



8

are then combined to give a solution to the original problem. In the field of

hydrological model calibration, many studies have suggested that it is important

and efficient to decompose the calibration processes [Boyle et al.(2000), Dunn &

Colohan(2010), Hay et al.(2006), Hogue et al.(2006)]. In this research, the focus is

on developing a more efficient yet integrated physical representation of hydrologic

processes at the catchment scale and exploring how national data sets can support

such models within a testable framework. As part of this study, it was necessary

to develop a new partition calibration strategy that efficiently allows multi-state

geospatial/temporal parameters to be estimated. An important element of this

research is the role of ecosystem variables on the hydrologic process operating in

the catchment. Case studies involving wetland hydro-ecology and dynamic forest

water use serve to test the hypothesis that ecosystems have a dynamic role to play

in catchment hydrology.

1.3 Organization of the Dissertation

The remaining content of this dissertation is based on a serial of successive research

on hydrological modeling. The chapters are organized to address individual issues,

which designate four research papers.

• Chapter 2 presents a two-partition calibration strategy for physics-based,

fully coupled watershed modeling using national data and an evolutionary

algorithm, which has been published in Computers and Geosciences.

• Chapter 3 presents a three-step strategy to optimize parameters for distributed

watershed modeling using weighted objectives between multiple observed

variables. This paper is intended to be submitted to Journal of Hydrologic

Engineering.

• Chapter 4 presents a spatial calibration strategy to constrain groundwater table

modeling in the representation of wetland dynamics. This paper is intended

to be submitted to Hydrological Processes.
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• Chapter 5 presents a coupling study of hydrologic and terrestrial biogeochemical

processes to test the common assumption that catchment runoff can be

adequately simulated with a fixed seasonal forest evapotranspiration model.

This paper has been accepted as a book chapter of the Geophysical

Monograph Series by the American Geophysical Union.

In the end, Chapter 6 summaries the scientific contribution of this dissertation and

suggests potential improvements for future work.



Chapter 2
A Two-partition Calibration Strategy

for Physics-based Fully Coupled

Watershed Modeling Using National

Data and the Evolutionary Algorithm

2.1 Introduction

Physics-based, fully coupled and distributed hydrologic models seek to simulate

hydrologic states in space and time with representations of hydrologic processes

and parameters that have physical meanings. Ideally, the model should not

require calibration if all parameters were available through experimentation, field

measurements, and national data coverage sets. For example, the Soil Survey

Geographic Database (SSURGO) with soil textural information was tested as

a useful soil physical property for a-priori parameter estimation of distributed

hydrological modeling [Anderson et al.(2006)]. Such national datasets provide a

measure of spatial variations and can potentially meet the data requirements of

distributed hydrological models. However, due to the high uncertainty of spatially

distributed soils and estimation of geologic properties [Vereecken et al.(2010)],

calibration is still an indispensable part of the physicsbased hydrologic modeling.

Similarly, the National Land Cover Database (NLCD) and Global Land Cover
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(UMDGLC) provide distributed vegetation information for the models. As in the

previous case, the radiation, leaf-area, and canopy parameters serve as initial or

a-priori parameters, and calibration is required to improve representations of the

soils and vegetation information [Duan et al.(2006)]. National products for gridded

climate, hydrogeologic data and digital elevation models also require processing as

part of the modeling process. The scale of geospatial/temporal data necessary for

modeling, and the need to simulate nonlinear, multi-state, hydrological processes

over large areas led to simplified strategies such as trial-and-error techniques for

parameter estimation with limited success[Ivanov et al.(2004), Qu & Duffy(2007),

Du et al.(2007), Li et al.(2008), Takeuchi et al.(2010), Shih & Yeh(2011)]. In

recent decades, computational methods have led to improved model-calibration

frameworks, including Monte Carlo Analysis, Genetic Algorithm (GA), and

Evolutionary Strategy (ES) [Tolson & Shoemaker(2007), Nicklow et al.(2010), Reed

et al.(2012)]. Comparative studies between different optimization algorithms have

advanced the understanding of complex models and parameter properties and

benefited watershed modeling applications [Tolson & Shoemaker(2007)]. Clearly,

these approaches still require very large computational resources, and the need

for efficient parameterization is still an unsolved problem. Another component

of any efficient strategy is a partition calibration processes [Lei et al.(2011)].

However, relatively little work on partition calibration processes has been applied

to parameter estimation of physics-based, fully-coupled, distributed hydrologic

models.

In this study, the physics-based, fully-coupled, distributed hydrologic model PIHM

(Penn State Integrated Hydrologic Model) is analyzed by a sensitivity-based

Partition Calibration Strategy (PCS) for efficient model parameter optimization.

The efficiency of PCS is gained by partitioning data into groups with distinct

sensitivities to model processes. The physical model uses a semi-discrete

FVM (Finite Volume Method) to form the coupled equations, which include:

Noah LASM [Chen & Dudhia(2001)], 2-D overland flow, 1-D unsaturated flow

and 2-D subsurface flow to streams. PIHM is an open-source, distributed

hydrologic model (http://www.pihm.psu.edu), and has been applied to multi-scale

hydrologic settings, with multiple versions adapted to hydrodynamics, transport,

and landscape evolution modeling [Qu & Duffy(2007), Li & Duffy(2011)]. The
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objective of this chapter is to introduce a new calibration framework for PIHM

that is compatible with the intensive computational requirements of integrated

catchment modeling and to future test the robustness of the method.

2.2 Model Formulation and National Data Set

Support

2.2.1 PIHM

PIHM is a physics-based, fully-coupled, distributed hydrologic model. It simulates

interception, throughfall, infiltration, recharge, evapotranspiration, surface runoff,

groundwater flow, and channel routing in a fully coupled scheme. The spatial

domain decomposition, which is represented as a quality triangular mesh, uses the

triangle [Shewchuk(1997)] that is an implementation of the Delaunay triangulation

algorithm. The resolution of spatial domain decomposition can be varied according

to the geomorphological or hydrological characteristics of the watershed. The

spatial domain decomposition can be constrained by hydrologic features such as

observation point, boundary conditions, etc. [Kumar et al.(2009)]. Hydrologic

equations that include partial differential equations (PDEs) for overland flow,

subsurface flow, and channel routing, and ordinary differential equations (ODEs)

for interception, infiltration, recharge, and evapotranspiration (ET) are assembled

over each control volume. PDEs are discretized to ODEs using the finite volume

method. This results in an identical local system of ODEs assigned to each model

grid. The local system is referred to as the kernel. The local system of ODEs is

assembled over the entire model domain to form the global system of ODEs and

is solved using the SUNDIALS solver software [Cohen & Hindmarsh(1996)]. For a

detailed description of the modeling approach and formulation, the reader should

consult [Qu & Duffy(2007)] and [Kumar(2009)].
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2.2.2 Hydrological Processes

A short introduction on the hydrological processes and corresponding model

parameters is provided in this section. A brief illustration of the model coupling

strategy is shown in Figure 2.2, and the main equation of PIHM is listed in Table

2.1.

Interception: Due to the vegetation and canopy cover, a fraction of

precipitation is intercepted and temporally stored until it returns to the atmosphere

as evaporation or passes through the canopy as throughfall or stemflow. PIHM

uses a bucket model to describe the interception process:

dh0I
dt

∣∣∣∣
m

= pt − q+ − e+
3∑
j=1

qsj

∣∣∣∣∣
m

(2.1)

where h0I is the vegetation interception storage, Pv is the total precipitation, Ec is

the evaporation from canopy interception, and Pt is the throughfall and stemflow.

Subscript m represents the spatial grid, ranging from 1 to the total number of

triangles.

Snow melt : The dynamic snowmelt conservation equation is given by:

dh0S
dt

∣∣∣∣
m

= Ps − Esnow −∆w|m (2.2)

where h0S is the snow water equivalent storage, Ps is the solid precipitation water

equivalent, Esnow is the evaporation directly from snow cover, and ∆w is snow-

melting rate, which is determined by a temperature index method.

Overland Flow: The governing equations for surface flow are the 2-D estimation

of St. Venant equations [Qu & Duffy(2007)]. The equations are approximated in

semidiscrete form:
dh1
dt

∣∣∣∣
m

= pt − q+ − e+
3∑
j=1

qsj

∣∣∣∣∣
m

(2.3)

where h1 is the shallow water depth above the ground surface and qsj is the

normalized lateral flow rate from element to its neighbor j. The terms pt, q
+

, and e are throughfall, infiltration, and evaporation, respectively. Subscript m

represents the spatial grid, ranging from 1 to the total number of triangles.
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Subsurface Flow: The model assumes that each subsurface layer can have both

unsaturated and saturated storage components [Qu & Duffy(2007)]. With the

estimation (only vertical flow in unsaturated zone) and integration, the balance

equations are formed:

θs
dh2
dt

∣∣∣∣
m

= q+ − q0
∣∣
m

(2.4)

θs
dh3
dt

∣∣∣∣
m

= q0 +
3∑
j=1

qgj

∣∣∣∣∣
m

(2.5)

where θs is the moisture content, h2 is the unsaturated storage depth, h3 is the

groundwater depth, q0 is flux between unsaturated-saturated zone [Kumar(2009)],

and qgj is the normalized lateral groundwater flow rate from element i to its neighbor

j. Here [van Genuchten(1980)] formulation was used in discretized form to improve

the computation performance [Qu & Duffy(2007)].

Channel Routing: The same semi-discrete finite volume approach is applied to the

1-D estimation of Saint Venant equations [Qu & Duffy(2007)]:

dh4,5
dt

∣∣∣∣
k

= p− e+
2∑
j=1

(qsl + qgl ) + qcin − qcout

∣∣∣∣∣
k

(2.6)

where h4,5 is the depth of water in the channel and beneath the channel, p and e

are precipitation and evaporation from the channel segment respectively, and qsl

and qgl are the lateral surface flow and groundwater interaction with the channel

respectively from each side of the channel. The upstream and downstream flow

for each channel segments are qcin and qcout respectively. Subscript k represents the

channel segment, ranging from 1 to the total number of channel segments.

Evapotranspiration (ET): The total evaporation is the sum of evaporation from

canopy interception (ec), transpiration from vegetation (et), and evaporation from

soil (es). The Penman-Monteith approach is used for the calculation of the

potential evaporation:

ET0 =
∆(Rn −G) + ρaCp

(εs−εa))
ra

∆ + γ(1 + rs
ra

))
(2.7)
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Here ET0 refers to potential evapotranspiration, Rn is net radiation at the

vegetation surface, G is soil heat flux density, εs − εa represents the air vapor

pressure deficit, and ρa is the air density, and Cp is the specific heat of the air.

∆ is the slope of the saturation vapor pressure-temperature relationship, γ is the

psychometric constant, and rs, ra are the surface and aerodynamic resistances. The

ET calculation equations are adapted from Noah LSM [Chen & Dudhia(2001)] for

computing the actual evapotranspiration:

ec = σfep(
Wc

S
)0.5 (2.8)

et = σfepBc[1− (
Wc

S
)0.5]theta (2.9)

es = (1− σf )βep (2.10)

where σf refers to vegetation fraction, Wc is the intercepted canopy water content,

S is the maximum canopy capacity, Bc is a function of canopy resistance, and β is

calculated by:

β =
θ − θw
θref − θw

(2.11)

where θref is field capacity and θw is wilting point.

2.2.3 Watershed Description

The Susquehanna-Shale Hills Critical Zone Observatory (SSHCZO) is funded by

the National Science Foundation under the Critical Zone Observatory Program

(CZO). The site is located in the Ridge-and-Valley physiographic province in

Central Pennsylvania. The upland site has an area of 8 hectares. The SSHCZO

has been the focus of several interdisciplinary studies, in biogeochemistry, ecology,

geomorphology, meteorology, hydrology, and pedology [Brantley(2008)], which

provide a unique and well-documented watershed to benefit cross-disciplinary

science [Anderson et al.(2008)] and intensive data for model testing. The site

has a long history of experimental research going back to the the 1970s when

a series of irrigation experiments were conducted at this site by the Forest

Hydrology group at The Pennsylvania State University in 1974 [Lynch(1976)]. The

experiment provided insight into the physical mechanisms of runoff and streamflow
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generation of SSHCZO and revealed the effects of the antecedent soil moisture on

the runoff peak and timing. The hydrological processes involving the irrigation

experiment were reproduced by a numerical fully-coupled, physics-based model

[Qu & Duffy(2007)]. Spatial hydropedologic heterogeneity of SSHCZO was studied

by year-round soil moisture monitoring across the watershed [Lin(2006)]. The

SSHCZO is a rapid erosion-cut, deep V-shaped valley watershed with an underlying

Rose Hill shale geology layer [Lynch(1976)]. Within the forested watershed, an

ephemeral stream flows into Shavers Creek (185 km2), which eventually discharges

into the Juniata River, the second largest tributary of the Susquehanna River

Basin (Figure 2.3).

^

Pennsylvania

New York

Maryland

Virginia
West Virginia

Lower Juniata

Raystown

Upper Juniata

!(

$

SSHCZO

l

200
Meters

V Notch Weir

Weather Station

Approximate Latitude     40º39’52.39”N    
Approximate Longtitude 77º54’24.23”W

Figure 2.3. Location of SSHCZO.
The left figure shows the position of SSHCZO in the Juniata River watershed, and the right

figure shows the stream and shape of SSHCZO.

2.2.4 National Data Support

Data support is one of the most important issues related to the model applications,

and the PIHM model development uses national data products (Table 2.2).

GIS tools have been developed to process the national geospatial/temporal data

into model parameters, and the reader is referred to [Bhatt(2012)] for details

of this process. Additional data for calibration and validation of such models

is desirable and is available from selective research networks: National Critic
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Zone Observatories (CZOs), Long Term Ecological Research (LTER) Network,

US Forest Service Watershed Condition Framework, and USDA Experimental

Watersheds. With respect to river-basin scale, predicting and managing the

national surface and groundwater resources in the United States requires seamless

and fast access to the essential geo-spatial/geo-temporal data necessary for

physics-based numerical models as well as access to data fusion tools. A

basic cyber infrastructure is currently available for the necessary data for all

HUC-12 watersheds in the continental US [Leonard & Duffy(2013)] The site

(www.hydroterre.psu.edu) includes national watershed, soils, climate, digital

elevation data as well as land cover and river basin hydrographic data sets.

The current prototype includes accessibility and scalability of virtualized services

supporting essential national geospatial/temporal data sufficient for numerical

watersheds. The national data products include 30m DEM, the National

Land Data Assimilation System (NLDAS-2) as atmospheric forcing, soils survey

(SSURGO, STATSGO), and land cover (NLCD 2001, UMDGLC). The data have

been processed for the HUC-12 (12 digit Hydrologic Unit Codes) watershed/stream

network, and soil hydraulic properties. In addition, PIHM teams are coordinating

this effort with NSF-supported communities (CZO, LTER, CUAHSI) and EU

colleagues (Soiltrec) with a goal of interoperable data sets and watershed models

for the essential terrestrial geospatial data necessary for supporting numerical

watershed prediction at high resolution (20-100m). In this study, raw data of

SSHCZO was demonstrated to understand the workflow from the real watershed

to calibrated numerical modeling.

2.2.5 A-Priori Parameters

The national data provides consistency in model application across any watershed

in the United States. However, incorporating the physical data layers into the

hydrologic model requires intensive data development, topology definitions, and

projection of parameters to individual model grids. A tightly-coupled GIS interface

to PIHM called PIHMgis, which is an open-source, platform independent, and

extensible framework, enables synthesis of model parameters using national data
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products [Bhatt et al.(2006)]. The tight coupling between GIS and the model is

achieved by developing a shared data-model and hydrologic-model data structure

with a-priori parameter estimates from the national dataset for PIHM simulation.

Soil hydraulic properties are obtained by applying pedotransfer functions (PTF)

[Wösten et al.(2001)] to textural classes in the national soils data, SSURGO, and

STATSGO. Each soil class contains soil texture data with the proportion of sand,

silt, clay, and organic matter and the bulk density. PTF is applied to generate

hydraulic properties including conductivity, porosity, and van Genuchten water-

retention parameters [van Genuchten(1980)]. Estimates of vegetation parameters

are available from the NLDAS that provide season dynamics of each land-cover

type. Vegetation parameters such as seasonal LAI, stomatal resistance, and surface

roughness are projected into the model according to the spatial vegetation class

map of NLCD or UMDGLC.

2.3 Partition Calibration Strategy

In this section, an efficient calibration strategy is developed with an analysis

of parameter sensitivity to hydrological processes. Sensitive parameters are

partitioned into 2 groups, which generally are sensitive to hydrologic events and

to seasonal response variables (Table 2.3). The calibration strategy is then used

to estimate parameters through a sequential process with respect to each group.
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2.3.1 Monte Carlo Sensitivity Analysis

The objective function based in root-mean-square error (RMSE) was selected to

analyze the goodness of fit between observations and simulations. The SSHCZO

and a simple hydrological event (precipitation event: from 2009 June 15th to 2009

June 30th) were selected for Monte Carlo experiments. Because of the large number

of non-behavioral simulations (parameter set leads to convergence failure of the

solver), 100,000 Monte Carlo samples were tested, and only 7,000 simulations were

selected as behavioral results. Regional sensitivity analysis (RAS) was applied for

each parameter [Demaria et al.(2007)]. The Monte Carlo simulations were ranked

according to the value of their objective function and then equally divided into

ten bins. The first bin contained the best 10% of the behavioral simulations,

the second bin the next best 10%, and so forth. For each bin, the normalized

objective function values were plotted as a cumulative distribution function of the

parameter value. The curves for each parameter are listed in each panel in Figure

2.4. A straight one-to-one line suggested the insensitivity of the parameter to the

event-scale hydrologic response, whereas different curves in each bin suggested a

high sensitivity of the parameter.

The most sensitive parameters are hydraulic conductivities and soil porosity, which

is also found by [Shi et al.(2014a)]. The van Genuchten parameters presented

variation between each cumulative curve, indicating their sensitivity to the event-

scale hydrological processes. The root zone depth, field capacity, wilting point,

minimum canopy resistance, and vegetation presented straight lines, suggesting

that the response of a single hydrological event is insensitive to their values. As a

result of the sensitivity analysis, the total parameter space was partitioned into two

groups: the EG, or hydrologic ”Event Group,” and SG, or the ”Seasonal Group,”

parameters (Table 2.2).
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Figure 2.4. Results of regional sensitivity analysis (RSA) for parameters in PIHM.
A straight one-to-one line suggested the insensitivity of the parameter to the event-scale
hydrologic response, whereas different curves in each bin suggested the sensitivity of the
parameter.

2.3.2 Calibration of EG Parameters

The computational cost of PIHM simulations necessitates an assessment of the

minimum number of Monte Carlo runs for EG parameter calibration. This is

especially important for large-scale watershed modeling. Here we tested the
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CMA-ES [Hansen(2006)]. The CMA-ES was initially applied in groundwater

remediation design where it was shown to be an effective strategy [Bayer &

Finkel(2004)]. In particular, CMA-ES is suited for complex problems without any

problem-dependent parameters or for problems with a modest number of objective

function evaluations [Hansen(2006)]. Comparative studies have concluded that

CMA-ES is an efficient algorithm and less computationally expensive than other

optimization algorithms [Hansen et al.(2003), Li & Heinemann(2007)]. According

to [Bayer & Finkel(2004)], CMA-ES has the advantage in terms of efficiency and

outperforms the Simple Genetic Algorithms (SGAs) with problem dimensions and

the optimality of the objective function value. Therefore, CMA-ES could be an

ideal fit for the calibration of computationally intensive models.

The CMA-ES is an evolutionary algorithm for difficult non-linear, non-convex

optimization problems in a continuous domain. CMA-ES is a rank-based (η,

λ) evolution strategy in which the best of the offspring form the next parent

generation. It generates new population members by sampling from a probability

distribution that is constructed during the optimization process. I provide a short

overview of CMA-ES. The source code and detailed description are available online

(https://www.lri.fr/~hansen/cmaesintro.html).

When I optimize the fitness f : Rn → R, where the n is the dimension of the

problem, CMA-ES follows a randomized black box search scenario:

1. Initialize the distribution parameters θ0.

2. For generation g=0, 1, 2, ... :

a. Sample λ independent points from distribution P (x− θ(g)) = x1, ..., xλ.

b. Evaluate the sample x1, ..., xλ on f .

c. Update parameters θ(g+1) based on the best performers x1, ..., xη(f(x1) ≤
f(x2) ≤ f(xη)).

Break, if termination criterion met.

In CMA-ES, the search distribution to be estimated is a multivariate normal

distribution N(m, δ2C). m is the mean of the current population. The covariance

matrix δ2 C is used to guide the search towards optimized parameter space. I use

the recommended default equation to determine the population size.

λ = 4 + b3 ln(n)c and µ =

⌊
λ

4

⌋
(2.12)
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Parameter Scale Function

Conductivity (0.01,100) 10(0.5−x)×4

Porosity (0,0.7) x× 0.7
Macropore depth (0,bedrockdepth) x× bedrockdepth

Mannings roughness (0.1,10) 10(0.5−x)×2

Van Genuchten parameter (α, β) (0,5) x× 5

Table 2.4. Rescaling function of real parameters used in the calibration algorithm
x represents the generated parameters, which range from 0 to 1. The rescaling functions project

the generated parameters to physically acceptable parameter values for PIHM.

where n is the search space dimension (here the number of EG parameters to be

calibrated in PIHM is 12).

The CMA-ES was implemented using Message Passing Interface (MPI), necessary

for distributed modeling with PIHM. The main processor is responsible for the

parameter population, recombination, and selection. At the beginning of each

generation, the parameters are sent to different processors. Each processor rescales

the parameters and input to the independent PIHM simulation. The rescaling

function listed in Table 2.4 ensured the physical meaning of each parameter. The

main processor gathers the objective function values after all the processors finish

the PIHM simulation and objective function evaluation. The fitness function (cost

function or objective function) is defined as the root mean square error (RMSE)

for predicted versus actual observations. The CMA-ES stops when the defined

maximum number of generations is reached.

2.3.3 Calibration of SG Parameters

A series of studies have been conducted for parameter sensitivity of Land Surface

Model [Kato et al.(2007), Prihodko et al.(2008), Rosero et al.(2010)], which provide

guidance for calibration of SG parameters. Root zone depth, which controls the

availability of water for transpiration, is critical for transpiration. Vegetation

fraction can balance the transpiration between evaporation. Wilting point controls

the lower limit of soil evaporation, while higher field capacity values tend to

decrease soil evaporation [Rosero et al.(2010)]. Due to near-linear responses, these

SG parameters could be calibrated according to previous studies of Land Surface
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Models.

2.4 Results and Discussion

2.4.1 Results and Validation

The unstructured mesh was constructed from a 0.5m LiDAR digital elevation

model to construct the unstructured mesh. Soil and vegetation parameters were

obtained from SSURGO and NLCD, as described earlier. The spatial soil class

map was updated with field survey [Lin(2006)]. The domain of 8.4 was spatially

discretized into 535 triangles and 20 linear segments to represent the stream. The

hourly observation from the year 2009 was used for the calibration, and a validation

period was chosen from a previous experiment [Lynch(1976)]. The same event in

Monte Carlo experiment was selected as the calibration period for the optimization

of the EG parameters.

The calibration proceeds sequentially by first estimating EG parameters, and then

the SG parameters were determined by trial and error that estimated the annual

water budget after the EG parameter calibration. In this sequence, the calibration

process provided the most consistent calibration results. After calibration, running

the model for the entire year demonstrated that large precipitation events during

the summer dry period (July-August) and the fall wet period (September-October)

were well simulated (Figure 2.5). Note that the antecedent moisture (soil moisture

and shallow groundwater) has a strong affect on the flood peak and this is well

represented in the model results. The NashSutcliffe model efficiency coefficient

(NSE) [Nash & Sutcliffe(1970)] of 3-hour streamflow was 0.88 in 2009.

The validation was performed using the artificial irrigation experiment

[Lynch(1976), Qu & Duffy(2007)], with the historical measurements of 15-minute

precipitation, temperature data and the artificial irrigation rates (Figure 2.6).

The parameters estimated from 2009 were adequate for the validation period

even though the validation period was several decades earlier. The departure

of model results from observed streamflow is likely explained by the lack of
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historical meteorological data (relative humidity, wind speed, and solar radiation)

and vegetation dynamic. The flooding events were underestimated in July and

overestimated in August, which suggests the seasonal Leaf Area Index pattern

used in the model could not apply to the growth stage of the forest 30 years

earlier(1970s). The research of biogeochemical modeling will evaluate biomass

forest growth for long-term hydrologic reanalysis (Chapter 5).
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2.4.2 Strengths and Limitations of PCS

Partition calibration generally attempts to decompose the vector of unknown

model parameters into groups that in some way allow for greater efficiency in the

estimation process. The question is, how does one define the groups? For example,

certain parameters can be estimated using baseflow relaxation periods during cool

seasons or when vegetation is dormant. The strategy in this case partitioned the

watershed into sub-basins and allowed for efficient parameter estimation.

In this study, the parameter space was partitioned according process time scales

in PIHM. Integrated models such as PIHM implicitly couple multiple hydrological

time scales, ranging from minutes to decades. Our approach was to use Monte

Carlo simulation to assess the sensitivity and time scales of all parameters in

the model. These simulations suggested a natural grouping of parameters in two

categories: 1) EG made up of hydrologic parameters; and 2) SG of energy-related

parameters. These 2 groups formed the basic partitioning strategy and greatly

improved the efficiency of the estimation. The results of the three watershed

applications suggested the event-scale calibration efficiently enabled automated

parameter estimation for PIHM. We expect this approach is a potential solution

for calibration of other complex, spatially distributed models.

One serious limitation is the lack of availability of a-priori estimates and ranges of

parameters. At this stage PIHM team is developing a prototype data service

for soils, hydrogeology, landuse/cover, topography, and climate from national

data sources (http://www.hydroterre.psu.edu [Leonard & Duffy(2013)]). However,

there is a national need for community support of high resolution geospatial data

for distributed modeling in the future. Another limitation of the method is that

the single objective approach we are using may not always be sufficient, especially

for the integrated models with prediction of different hydrological processes. We

expect that the approach can be easily extended to a weighted objective strategy or

a multi-objective approach with multiple hydrological state and flux measurements.

In Chapter 3, the calibration strategy is further developed for the case of multiple

constraints.
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2.5 Uncertainty Analysis

The evolution of the parameter value over time was plotted from three independent

calibration runs of EG calibration (Figure 2.7). The figure suggested Van

Genuchten parameter α converged very quickly to an optimum in the three runs.

The infiltration rate, macropore depth, porosity, and Van Genuchten parameter β

converged less quickly, and with greater error. The remaining parameters did not

sensitive to the model result, which randomly fell into some values. The different

results from three independent runs demonstrated remarkable uncertainties of the

calibrated parameters. Monte Carlo analysis is often used for the quantification

of uncertainty of environmental models [Liu & Gupta(2007), Bastina et al.(2013)].

Statistics of model output were found by generating many simulations according

to certain distributions of parameter uncertainty. Here, we evaluated the posterior

distribution of model parameters.

2.5.1 Posterior Parameter Evaluation of One-dimensional

case

The Monte Carlo sampling of Van Genuchten parameter α was tested by fixing

the rest of model parameters. The calibrated Van Genuchten parameter α was

consistent with the Monte Carlo simulation results.

2.5.2 Posterior Parameter Evaluation of Two-dimensional

Case

Further, the case of two parameters was considered. Both Van Genuchten

parameter α and β were sampled at each Monte Carlo simulation. Local

optimal zones (RMSE<60) were shown (Figure 2.9). This explained the different

optimization results in the three independent calibration runs (Figure 2.7).

The above Monte Carlo analysis was supported by a high-speed parallel computing

environment. It cost a huge volume of computation resources for the study at

Shale Hills, a 0.08km2 experimental catchment. However, for larger application
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Figure 2.8. The Monte Carlo simulation of Van Genuchten parameter α.
The ◦ represents the PIHM RMSE of each Van Genuchten parameter α. The 4 represents the
calibrated Van Genuchten parameter α.

Figure 2.9. The Monte Carlo simulation of Van Genuchten parameter α and β.

and higher spatial resolution studies, it may not be possible to obtain enough

samples for Monte Carlo-based approaches. To save the number of model runs,

Bayesian emulation has been proved as an efficient approach for many complex

environmental models [OHagan(2006), Bhat et al.(2010), Stone(2011)]. Future

study should focus on the model uncertainty quantification of all other parameters
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by Bayesian emulation.

2.6 Conclusion

Physics-based, distributed hydrologic models are data intensive, with a large

computational cost. There is limited literature and tools available for parameter

sensitivity analysis and calibration of such models. An important asset is the

availability of national geospatial data products that can support distributed

models. Generally, these are underused or have limited accessibility to support

rapid implementation of watershed models. The study demonstrated that national

data products could serve as an a-priori estimate of critical parameters of

distributed model applications. Parameter sensitivity analysis partitioned the

parameter space into two parts, which enabled the application of the CMA-ES

optimization algorithm.

A general conclusion of this study is that a sensitivity-based, 2-scale partition for

parameter calibration provides a useful way to isolate parameters in a coupled,

multi-processes modeling approach. At the scale of first-order catchment, the

vegetation parameters should be improved for long-term modeling. Validation over

an extended period did not show evident degradation in the model performance,

which reflects the robustness of the calibrated parameters.

The partition calibration strategy has been applied not only at SSHCZO,

but also at the international CZO Lysina Catchment in the Czech

Republic with success [Yu et al.(2014b)]. The corresponding tutorial

webpage is available at http://www.organicdatascience.org/index.php/PIHM_

calibration_using_evolutionary_algorithms.



Chapter 3
”Informativeness” as a Quantitative

Index of Weighted-objective

Calibration for a Multi-state

Distributed Hydrologic Model

3.1 Introduction

Distributed hydrologic models supported by geospatial information on soil, geology,

topography, and vegetation data products can provide valuable information about

the watershed hydrologic cycle. However numerical simulation of the multi-state,

multi-process system is structurally complex and computationally intensive and

typically involve a high level of parameterization [Foglia et al.(2009)]. These

complications present a major difficulty in real watershed modeling applications,

which require advanced expertise in modeling schemes and computation as well as

experience in parameter calibration [Fang et al.(2013), Foglia et al.(2009), Hansen

et al.(2013)].

Current research is attempting to advance our understanding of the spatial and

temporal variability of watershed processes by implementing a new generation

of monitoring networks, including real-time observations of hydrologic stores and

fluxes such as soil moisture, water table depth, streamflow, and latent heat flux
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[Kerkez et al.(2012), Morin et al.(2012), Reba et al.(2011), Zreda et al.(2012)]. The

use of such geospatial and geo-temporal observations can be potentially beneficial

for resolving multi-state water stores and fluxes across the watershed or river basin.

However, constraining models with multi-state data increases the complexity of

model validation and testing. Of course, the benefit of distributed models is that

they preserve the important heterogeneities of the catchment and provide spatially

variable storage and flux predictions rather than averaged watershed behavior.

Where predictions of multiple states are required, an automated calibration

procedure that includes multiple geo-spatial and geo-temporal observations, as

well as a multi-objective calibration strategy, becomes increasingly important

[Fang et al.(2013), Foglia et al.(2009), Khu et al.(2008), Li et al.(2010), Stisen

et al.(2011), Rientjes et al.(2013), Hsie et al.(2014), Shi et al.(2014b)].

Another critical aspect of the model calibration is the selection of appropriate

metrics in assessing model performances for a set of model parameters. Based on

those model performance metrics, it is necessary to formulate objective function for

use in conjunction with a suitable optimization algorithm. The particular model

performance metrics provide quantitative assessment of the model’s accuracy in

reproducing catchment behavior and testing measurable criteria for evaluating

the model performance [Krause et al.(2005)]. Recently, a number of papers

have compared the performances and effectiveness of different assessment metrics

[Dawson et al.(2007), Krause et al.(2005)]. Their conclusions did not ideally favor

any particular assessment metric, but rather point out that each criteria has specific

pros and cons, and that the model context is necessary for model calibration and

evaluation [Krause et al.(2005)]. That is, the metrics are fundamental in developing

a calibration strategy for a specific model and purpose.

The spatial heterogeneity of watershed hydrological cycles has been intensively

documented using a network of observations and has been explained by the

integrated modeling strategies. [Frei et al.(2009)] recognized the importance

of structural aquifer heterogeneity leading to spatial patterns in river−aquifer

exchange by a process-based distributed watershed model. [Naranjo et al.(2013)]

demonstrated that heterogeneity and anisotropy have a strong influence on

the mean residence time in the riparian zone. At the Shale Hills Watershed

(http://www.czo.psu.edu), hydrological modeling studies have been carried out
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in the scheme of a fully-coupled modeling [Li(2008), Qu & Duffy(2007)] supported

by high-resolution geo-spatial, geo-temporal observations. The physics-based,

fully-coupled, distributed hydrologic model Penn State Integrated Hydrologic

Model (PIHM) was used to explain the effects of the antecedent soil moisture

condition of the watershed on the runoff generation mechanism [Qu & Duffy(2007)].

[Yu et al.(2013)] implemented Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) to the calibration of PIHM to support hydrologic reanalysis of rainfall-

runoff response of the watershed over the continuous simulation of three decades

[Yu et al.(2014a)]. In order to understand the other catchment behaviors, for e.g.

surface/subsurface flow interactions and watershed heterogeneity between riparian

zone and upland, it is desirable to calibrate and validate model predictions against

multiple observed hydrologic states and fluxes in the watershed.

In this context, the aim of this paper is to describe the development

and implementation of an informativeness-based, weighted-objective calibration

strategy to support distributed integrated hydrological modeling applications with

model constraints against multiple measurements. In this study, the strategy has

been used in conjunction with PIHM. First, the comparison of multiple efficiency

metrics was conducted to determine their effectiveness on PIHM calibration.

Second, correlations of PIHM performance at multiple observation sites, including

streamflow, water table depth, and ET (evapotranspiration), were explored by

Monte Carlo analysis. We define informativeness according to the performance

correlation. Finally, the weighted objective function was formulated based on

the informativeness from the previous step, and the model parameters were

calibrated to simulate the multi-state watershed response. The goal is to reduce

the uncertainty in simulated spatial dynamics of hydrologic processes constrained

by multiple observation sites.

3.2 Proposed Methodology

Watershed models attempt to capture the response of the hydrologic processes

and to predict hydrological state variables and fluxes with a coupling modeling

framework. Multiple objectives can be synthesized corresponding to a number of
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the available observations for e.g. soil moisture, water table depth, streamflow,

and evapotranspiration. Although calibrating a numerical model that involves

representation of hydrologic processes in a fully coupled scheme, a single

objective function could be possibly satisfied by multiple unique combinations of

parameters resulting in almost comparable model efficiency. A desirable outcome

of the optimization process would be a unique combination of calibrated model

parameters that satisfy multiple objectives pertaining to different hydrologic states

and fluxes. Under ideal conditions, the objectives should be non-conflicting.

However, due to errors in model structure and uncertainty in a-priori parameters

and observed data, the objectives of fitting different hydrological responses

simultaneously are usually not satisfied. Traditionally, optimization problems

involving multiple and conflicting objectives have been solved by combining

the objectives into a scalar function and, next, solving the equivalent single-

optimization problem to identify the best-compromise solution [Efstratiadis &

Koutsoyiannis(2010)]. However, the selection of weights and formulation of a

weighted-objective function is usually subject to modelers experiences may lead

to unsatisfactory solutions [Rientjes et al.(2013)]. Here, we define informativeness

as the indicator of the physical weights of each target in the calibration. In

this context, ”informativeness” attempts to resolve both model structure error

and observation uncertainty. The highest level of informativeness suggests that

the fitting of that observed variable is the priority of calibration. Finally, I

solve the multi-objective optimization problem for a physics-based, fully coupled,

computationally intensive model with a three-step strategy informativeness-based

weighted-objective calibration strategy. The proposed three-step strategy includes:

1. evaluate different metrics of goodness-of-fit criteria for the model;

2. calculate the ”informativeness” weighting for each calibration target, which

determines the weight in the formulation of objective function; and

3. formulate the weighted objective function and run the optimization algorithm

to calibrate the model.

The calibration strategy is illustrated in Figure 3.1.
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Evaluate informativeness of each calibration target

The hydrologic model

Formulate the informativeness-based objective fucntion

Run the optimization method

most e!ective metric

Multiple observed hydrologic variables
Calibration targets

Monte Carlo simulation

Weighted average

Compare metric e!ectiveness

Figure 3.1. Flowchart of the informativeness-based weighted-objective calibration
methodology.

3.2.1 Selection of Metrics According to Effectiveness

The first task is to select the metrics to evaluate the goodness-of-fit between

simulated watershed response and observed data. Most studies select the

metrics from statistical estimation theory, including the root mean square error

(RMSE), NashSutcliffe model efficiency coefficient (NSE), and Pearson product-

moment correlation coefficient (R) [van Werkhoven et al.(2008), van Werkhoven

et al.(2009)]. Each metric has its own advantages and could be ideal in terms of

fulfilling particular needs of an certain application [Dawson et al.(2007)]. RMSE

records the level of overall agreement between the observed and modeled datasets;

it is a non-negative metric that has no upper bound, where for a perfect model

the result would be zero. Studies have demonstrated that RMSE is more sensitive

to peaks values and higher magnitude events [Dawson et al.(2007)]. To constrain

for low flow values, a logarithmical transformation of RMSE, log-RMSE, could be

an appropriate solution [Wagener et al.(2009)]. NSE is sensitive to differences in

both the observed and modeled means and variances [Dawson et al.(2007)]. NSE

usually ranges from 0.0 (poor model) to 1.0 (perfect model), but negative scores

are also permitted. R is an indicator used to evaluate the linear dependence of

observed and simulated results, which demonstrate an overall agreement between

the observed and modeled datasets. It is intended to range from -1 to 1. In

some cases, conjunctive use of multiple evaluation metrics is necessary to better

constrain the model performances [Li et al.(2010), Wagener et al.(2009)]. In this

study, I implemented Covariance Matrix Adaptation Evolution Strategy (CMA-
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ES) in the calibration of the physics-based, fully coupled, distributed hydrologic

model Penn State Integrated Hydrologic Model (PIHM). We used the convergence

rates to test the effectiveness of three metrics: RMSE, NSE, R. These metrics are

defined:

RMSE =

√√√√1

t

t∑
i=1

(Oi − Pi)2 (3.1)

NSE = 1−
∑t

i=1(Oi − Pi)2∑t
i=1(Oi − Ō)2

(3.2)

R =

∑t
i=1(Oi − Ō)(Pi − P̄ )√∑t

i=1(Oi − Ō)2
√∑t

i=1(Pi − P̄ )2
(3.3)

where t is the total number of time steps in the calibration period, O is the observed

value, and P is the predicted value at any time step.

I applied one metric in the CMA-ES based optimization procedure, and at the same

time monitored the values of the other two metrics to evaluate the effectiveness of

each metric in the model calibration. The metric with highest effectiveness would

be selected in following study. For the details of the implementation of CMA-ES

to PIHM parameter optimization, the reader should consult [Yu et al.(2013)].

3.2.2 Evaluate the Informativeness of Each Calibration

Target

I considered 3 kinds of common hydrological observations: streamflow, water table

depth, and latent heat flux. Streamflow is often the most informative variable in

watershed modeling and it is the major target of most simulations. Streamflow

gauges measure level (stage), average velocity and discharge at a stream cross-

section. The water table depth below land surface or elevation is also a valuable

variable, reflecting the saturated storage of groundwater, and is observed through

piezometers. The latent heat flux, or the atmospheric flux of moisture from

evaporation and transpiration, is directly observed through the eddy covariance

instrument positioned above the canopy. I applied uniform random Monte Carlo
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sampling ( precisely 100,000 samples) to explore the parameter space. Following

that the model performance were evaluated at each observation site using the

most efficient metric. We plotted the objective function values between each pair

of variables to assess the correlation of model performance at each observation

site. High correlation implies the characteristic of non-confliction between the two

objectives. We argue that high correlation suggests a favorable informativeness,

which should be assigned a high weight in the aggregating function. Conversely,

the less correlated variable suggests that the variable is less informative and should

be assigned a low weight. The primary objective of most hydrological models is

the prediction of streamflow. We assign the informativeness of streamflow as 1.

The informativeness of other variables is defined by the correlation between the

variable and streamflow.

3.2.3 Weighted Function for Multi-objective Optimization

A multi-objective calibration involves the simultaneous optimization of model

residuals with respect to a vector of model parameters X [Gupta et al.(1998)],

which can be stated as

minE(θ) = {ei(θ), ..., em(θ)} , θ ∈ Θ (3.4)

where the goal is to find values for θ (a set of model parameters) within the feasible

parameters space Θ that minimize all of the model residuals ei(θ), i = 1, 2, 3, ...,m

at different calibration targets. Here, we apply an aggregation scheme to solve

the multi-objective optimization problem. The informativeness strategy described

above is used to determine the weights between each calibration target. Next the

multi-objective functions of prediction of different variables are aggregated into

one single objective with appropriate weighting:

e(θ) =
m∑
i=1

ωi × ei(θ) (3.5)

where ω is the weight for the model residual at each calibration target.The weighted

function is then used to constrain the model with observations from available

monitoring sites.
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3.3 Application Example: Catchment and

Model Setup

3.3.1 Multiple Observation at the Catchment

The study area, the 20-acre Shale Hills Watershed (Figure 3.2), is characterized

by relatively uniform side slopes with swales on both sides of the stream

[Lin(2006)]. Over several decades, the Shale Hills Watershed has been used as an

experiment field in a series of hydrological studies [Nutter(1964), Lynch(1976), Qu

& Duffy(2007)]. Recently, the watershed has been part of the Critical Zone

Observatory (CZO) project supported by U.S. National Science Foundation, as

Susquehanna-Shale Hills CZO (SSHCZO).

For high-resolution, fully coupled hydrological modeling, sub-daily climate

Figure 3.2. Map of the SSHCZO catchment showing the locations of streamflow station,
weather station, and pressure transducers.
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data are required for precipitation, air temperature, relative humidity, incoming

shortwave radiation, and wind speed. These data are available from the weather

station at the north ridge with 10-minute frequency [Duffy(2012)].

The soil hydraulic parameters for the van Genuchten model [van Genuchten(1980)],

including parameters to describe the inverse of air-entry suction (α), pore size

distribution (β), saturated hydraulic conductivity (Ksat), saturated water content

(hsat), and residual water content (hres), are derived from the field data set of

[Lin(2006)].

For the land surface, parameters such as leaf area index (LAI) and roughness

length were projected from NLDAS vegetation parameters. Notably the spatial

land cover pattern was determined by tree species and density [Yu et al.(2014a)].

3.3.2 Model Setup and Parameterization

We applied PIHMgis [Bhatt et al.(2006)], a tightly-coupled GIS interface to PIHM

to set up the modeling at SSHCZO. The procedures are illustrated in Figure

3.3. The 1m DEM [Guo(2010)] was applied to decompose the watershed into

535 triangles and 20 linear segments of stream channels. The tree survey data

[Eissenstat(2008)] was used to spatially parameterize the land cover at SSHCZO.

The soil classes [Lin(2006)] were also projected on each computational unit of

PIHM.

In the model, soil hydraulic properties are used to adjust parameters during

the calibration. The pre-calibration estimation of each parameter is presented in

Table 3.1. The range of each parameter is estimated from the physical meaning.

We focused on the model calibration targets, including the streamflow at the

outlet [Duffy(2010b)], the water table depths at riparian zone [Duffy(2010a)]

and upland [Lin(2010)], and the total evapotranspiration (ET) of the watershed

[Davis(2010)] (Figure 3.2). The observed data was resampled into hourly time

series for calibration targets (Figure 3.4).
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3.3.3 Performance of Each Metric

To evaluate the performance of each metric, we conducted three single-objective

optimization experiments. We targeted the outlet streamflow by applying different

model evaluation metrics: (a) RMSE; (b) 1-NSE: and (c) 1-R. In each experiment,

the evolutions of all three metrics were plotted in Figure 3.5. All of the metrics were

converging to a minimum value when we constrained RMSE and 1-NSE (Figure 3.5

(a) and (b)). The constraining of 1-R did not lead to the minimization of RMSE

and 1-NSE, especially after the 50th generation in the algorithm (Figure 3.5(c)).

The constraining of RMSE and 1-NSE had a similar effect in the single-objective

optimization processes. Because of the dimensionlessness of NSE, we decided to

use NSE as the metric for the calibration with multiple variables.

3.3.4 Formulate Aggregating Objective Function

We did Monte Carlo analysis to assess the informativeness of each calibration

target. For each simulation, the NSE of each target was determined for streamflow,

water table monitoring site A and site B, and ET. In each case, the NSE ranging

between 0 and 1 was plotted (Figure 3.6).

From Figure 3.6, I can see that the highest correlated variables were the streamflow

and water table monitored at site A. The interpretation is that a satisfactory

simulation of water table monitoring at site A is necessary for the prediction of

streamflow. The low correlation suggested conflicting model error between the

two variables. The informativeness of each target was calculated according to

Pearson product-moment correlation coefficient (R) in Figure 3.6 . Therefore, we

formulated the weighted-objective function as:

e(θ) =
1−NSEstreamflow+0.567×(1−NSEsiteA)+0.280×(1−NSEsiteB)+0.011×(1−NSEET )

1+0.567+0.280+0.011

(3.6)
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3.3.5 Model Calibration and Evolution of the Model

Performance

Applying the informativeness-based, weighted objective function, we calibrated

PIHM for hourly streamflow, water table depth, and ET. The weighted-objective

calibration improved the prediction of water table depths and ET without

significant degradation of streamflow prediction (Figure 3.7, Table 3.2). However,

without informativeness, the un-weighted averaged calibration demonstrated

strong conflicting between the model performance of streamflow and groundwater

table and was inclined to the prediction of the groundwater table at Site B and

ET.

We plotted the metrics of streamflow, groundwater table at site A, groundwater

table at site B, and ET during the evolution of the weighted objective function

(Figure 3.8). The trajectories of the metrics 1-NSE converged to a minimum

when the weighted objective e was optimized. The general trend of each 1-

NSE demonstrated the non-conflicting characteristic in ideal circumstances. The

fluctuation suggested that mild conflict existed due to model structure and

observation error. The 1-NSE at each site converged to less than 0.1, except

for that of ET, which implied the model discrepancy in the representation of the

observed latent heat flux [Shi et al.(2013)].
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3.4 Discussion

3.4.1 Performances of Metrics

The performance of three common metrics - RMSE, NSE, and R - was used to

evaluate the residual error between observed and modeled time series. RMSE

is dependent on the scale of the dataset that is being analyzed and limited in

comparison model performances on the same catchment and dataset [Dawson

et al.(2007)]. An advantage of NSE is that it is dimensionless. No matter the scale

of catchment and hydrological property of a dataset, good model performances

can be detected when the value of NSE is close to 1. R is also a dimensionless

metrics; however, it is insensitive to additive and proportional differences between

the observed and modeled datasets [Dawson et al.(2007)]. In the comparison

experiment, it was demonstrated as the stop of RMSE and 1-NSE after the 50th

generation of minimizing the value of 1-R. Similar functions of RMSE, NSE, and

R were found in [Dawson et al.(2007)] and [Abrahart et al.(2011)]. [Dawson

et al.(2007)] compared 18 metrics of four sets of hypothetical flow forecasting model

outputs, and the result indicated that the best performance of R did not score well

when compared to the metrics of RMSE and NSE. RMSE and NSE both reached

satisfactory performance with one set of hypothetical flow forecasting model

outputs. In addition, the dimensionless NSE is convenient for the aggregating

of objective functions [Rozos et al.(2004), Dung et al.(2011)]. Dimensional metrics

require normalization processes before aggregation [Li et al.(2010)].

3.4.2 The Meaning of Informativeness of Each Calibration

Target in Constraining Model Parameters

The implementation of distributed and fully coupled environmental models clearly

increases the the amount of observational data required to constrain the model

[Stisen et al.(2011)]. For PIHM, the calibration strategy suggests that streamflow

is strongly dependent on the water table depth within the riparian zone (Site A).

In Figure 3.6, it can be seen that the model performance at streamflow and Site A

behaved very much in tandem with each other: i.e., changing a parameter set will
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either increase or decrease the NSE in most cases. However, the model performance

of water table depth at Site B was weakly correlated with the performance of

streamflow. The low correlation of model performance between ET and other

variables suggested that the model performance for a event does not significantly

affect the general behavior of the season-scale performance [Yu et al.(2013)].

The selection of weighting coefficients for hydrological models has been reported in

several multi-objective calibration studies [Rozos et al.(2004), Li et al.(2010), Dung

et al.(2011)]. It was found that even though NSE was a dimensionless metric, a

direct incorporation of these metrics of different measurements into the objective

function might not be theoretically reasonable [Rozos et al.(2004)]. In one study,

the comparison experiment showed that uniform weighted calibration performed

worse than the result of weighted case [Dung et al.(2011)]. Different optimal

parameter sets can be obtained by changing the weighting coefficients. [Rozos

et al.(2004)] followed a hybrid strategy based on a combination of automatic

and manual methods by adjusting the weights according to previous optimization

results. [Dung et al.(2011)] developed a multi-site water level calibration of an

inundation model. The weight of NSE at each gauging station was assigned

according to the inundation impact. Expert knowledge was required to subjectively

assign the weights. In this study, I developed an informativeness concept,

which reflects the model-coupling scheme of different processes and enables

consideration of the spatial constraints of the watershed. It was argued that the

quantification of the weighting coefficients could be obtained by the informativeness

of each calibration target. The informativeness-based strategy for formulating

the weighted objective function avoids subjective judgements and could be easily

adapted by other integrated models. Noticeably, informativeness could also be used

as a threshold for the selection of calibration targets. When the informativeness

is too high, which means the two calibration targets are highly correlated, it

is redundant to incorporate both targets, while a low value of informativeness

suggests the model’s incapability of reproducing both targets at the same time.
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3.4.3 Comments on the Informativeness-based Weighted

Calibration

In this paper, I used the weighted average function to realize multiple constraints

of the model from observed variables at different hydrologic processes. With

the constraint of multi-measurements, the PIHM modeling results significantly

enhanced the prediction of water table depth. The key aims of distributed

modeling schemes are to reproduce multiple moisture fluxes and to reflect the

spatial heterogeneities of the hydrological mechanisms [Kim et al.(2012)]. The

weights selection determines the search preference for high-weight targets. I

obtained the non-dominated solutions from CMA-ES samples in the weighted

average calibration and un-weighted average calibration (Figure 3.9). Both

calibrations attempt a compromise between all objective functions. However,

the un-weighted calibration sacrificed the model’s performance for streamflow to

improve prediction of ET and the groundwater level at Site B, which generated

hydrologically unacceptable solutions. Clearly, informativeness-based weighted

calibration avoided the situations of unfavorable compromise.

For the aggregation approaches, multi-objective optimization problems can be

resolved by the non-dominated sorting. This method often generates a large

number of Pareto optimal sets. Usually, a further step of selection is necessary

to obtain a smaller number of Pareto fronts as physically sound solutions [Khu

et al.(2008)]. Also, selecting a final set of parameters from the non-dominated

solutions could be another challenge (Figure 3.9). The pre-defined weights

decide the final selection of the solution. Comparison between aggregation

and non-dominated approaches suggested that both of the methods can find

parameter values with overall good performance [Huang(2014)]. We argue that

the informativeness represents a preference for ordering for each calibration target

in the hydrological model. The weighted average aggregation method saved

computation cost and avoided the selection process from a large number of Pareto-

optimal solutions, each of which are efficient for computationally expensive models.
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3.5 Conclusion

This paper explores the informativeness-based, weighted-objective calibration of a

physics-based, fully-coupled hydrological model PIHM using observed streamflow,

water table depth, and eddy-flux tower data. The calibration strategy application

in Shale Hills Watershed, suggests the following.

1. The metric of NSE can be efficiently used in the assessment of PIHM

performance.

2. The informativeness provided a useful framework for objectively determining

weights between each calibration target. Here, the correlation of model

performance at each target was used for the evaluation of informativeness.

Results suggest a reasonable balance in streamflow, water table depth and

ET was achieved with this weighting strategy.

3. The comparison between single-variable optimization and weighted-average

optimization suggested that targeting only on streamflow could hardly

predict the spatial subsurface flow processes. Distributed hydrologic process

modeling relies on multi-variable constraints across the domain.



Chapter 4
Chapter 4 The National Wetland

Inventory as a Constraint on

Wetland Hydrology Modeling for

Regional Climate Change Impact

Assessment

4.1 Introduction

One of the recurring themes of research at the environmental resources

management is the understanding and sustaining of wetlands [Smardon(2009),

Tiner(2002)]. Our limited knowledge of the geospatial extent, behavior, and

classification of wetlands has caused difficulties in wetland identification and spatial

mapping [Tiner(2002), Wardrop et al.(2007a)]. From a hydrological view, it is

generally recognized that shallow groundwater is a defining feature of wetlands

and can exert a strong control on plant and animal life, as well as on soil

development [Council(1995)]. The National Research Council [Council(1995)]

concluded, wetland hydrology should be considered to be saturation within 1 ft.

of the soil surface for 2 weeks or more during growing season in most years (about

every other year on average).
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The National Wetlands Inventory (NWI) is the most readily available data

source for mapping the location and spatial extent of wetlands throughout the

United States [Martin et al.(2012)], though it has limitations. A number of

investigators have attempted to critique and improve the NWI database [Johnston

& Meysembourg(2002), Kudray & Gale(2000), Maxa & Bolstad(2009), Ozesmi &

Bauer(2002)]. These efforts to improve wetland maps and the underlying database

have used remotely sensed, geospatial information [Maxa & Bolstad(2009)] as

well as geomorphological, biophysical, and hydrologic observations [Wardrop

et al.(2007b)] to establish and map similar classes on a watershed basis. It is

generally agreed that quantitative hydrologic characteristics are among the most

important factors in wetland identification, delineation, classification, and mapping

[Johnson et al.(2004), Wardrop et al.(2007b)].

Clearly, geospatial classification of wetlands and their relation to shallow

groundwater-stream conditions across the watershed provide a valuable tool for

resource assessment, and the close relation of shallow groundwater suggests that

wetlands may also play a useful role in watershed modeling studies.

Traditional watershed modeling has had a tendency to focus primarily on

streamflow simulation [Pyzoha et al.(2008), Su et al.(2000), Yuan et al.(2011)], with

limited attention paid to understanding spatial patterns of streamflow [Grayson

et al.(2002)]. More recently, physics-based hydrological models have begun to

demonstrate the capability of utilizing geospatial data for landscape, vegetation,

soil, and geology as a basis for a more complete mapping of groundwater-stream

dynamics across the watershed [Mirus & Loague(2013)]. A question we attempt

to answer here is, can distributed watershed models utilize the National Wetlands

Inventory as a data source for constraining surface-groundwater conditions [Lu

et al.(2009), Min & Wise(2009), Scibek & Allen(2006)]?

Within the Chesapeake Bay watershed, climate variability has and is expected

in the future to influence environmental changes in the Bay itself [Najjar

et al.(2010), Neff et al.(2000), Rogers & McCarty(2000)]. Statistic analysis

suggested that a 3◦C increase in mean annual temperature may be associated

with a stronge draught in mid-Atlantic United States. Although increases in

precipitation may mitigate part or the likely water shortage [Huntington(2003)],

it is also reasonable to assume that freshwater wetlands would be susceptible to
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climate change under these conditions [Najjar et al.(2010), Wardrop et al.(2007a)].

Located within the Chesapeake Bay watershed, the Susquehanna River Basin

encompasses an area of 27, 501 square miles, of which 76 percent is in Pennsylvania,

23 percent in New York, and 1 percent in Maryland. Over 90 percent of the basin

is underlain by sedimentary rock strata largely undisturbed in the Appalachian

Plateau Province but convoluted and eroded in the valley and Ridge Province.

The principle rivers are the Susquehanna (444 miles), West Branch (228 miles),

and Juniata (86 miles). Approximately 90% of the Upper Chesapeake Bay and

50% of the entire Chesapeake Bay freshwater inputs are from the Susquehanna.

Groundwater is by far the largest store of water in the Susquehanna River

Basin, serving 50% of the water users in the basin. Groundwater recharge,

discharge (baseflow), and shallow groundwater storage are highly sensitive to

climate conditions [Fan et al.(2013), Green et al.(2011), Kløve et al.(2013), Taylor

et al.(2013)]. The timing and magnitude of drought conditions depend on the

space and time scales of groundwater storage. Recently, the assessment of climate

change impacts and management practices on the watershed resources was the

focus of a comprehensive multidisciplinary study [Brooks & Wardrop(2013), Zhang

et al.(2010)]. Another important study is the NSF-funded Susquehanna-Shale

Hills Critical Zone Observatory (SSHCZO), an experimental site devoted to

integrated mathematical modeling and testing studies of environmental change

impact [Banwart et al.(2011)]. In this paper, we examine the response of shallow

groundwater conditions of NWI wetlands for 7 mesoscale watersheds of the

Susquehanna River basin, ranging in size from 163 km2 to 902 km2. The objectives

of the study were to: 1) calibrate and validate a physics-based, spatially distributed

hydrologic model utilizing NWI data as a constraint on the groundwater table over

each basin; 2) use the model to extract distributed information for the near-surface

hydrologic response for the 2004-present period; and 3) examine the sensitivity of

shallow groundwater table depth at NWI sites under the IPCC climate change

scenario [Najjar et al.(2009)] using the validated model.
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4.2 Description of Study Area

This study is based on 7 mesoscale watersheds across SRB (Figure 4.1). The

characteristics of watersheds are listed in Table 4.1 and Table 4.2.

(a) KC

Kettle Creek is a 74.7-km-long tributary of the West Branch Susquehanna River,

situated in the mountainous high plateau section of the Allegheny Plateau

province of north central Pennsylvania. Overall, the land cover in the watershed

is categorized as 85% forested, 13% agriculture. The historic surface and

underground coal mines have seriously affected the water quality of the downstream

part of the stream before it discharges to the main stem of the West Branch of

the Susquehanna (Love et al., 2005). Many isolated wetlands are found within the

mined land [Tiner(2003)].

(b) YWC

Young Womans Creek is another tributary of the West Branch Susquehanna River,

encompassing the area of 120 km2. YWC situated in the Allegheny Plateau

province of north central Pennsylvania, next to KC. Heavy forest covers 98.8%

of the watershed. Both KC and YWC consist of many very deep, steep-sloped

valleys that are separated by narrow, flat to sloping uplands.

(c) LJR

The Little Juniata River is a tributary of the Juniata River, the second-largest

tributary of the Susquehanna River. It is formed by the confluence of several short

streams. It flows northeast in the Logan Valley at the foot of Brush Mountain.

The land cover of the LJR is 72.0% forest, and 25.6% agricultural. The LJR is

located at the transition between the Valley and Ridge and Appalachian plateau

physiographic provinces.

(d) SC

Shavers Creek is located southeast of LJR. The land use in the valleys of SC

is mixed, primarily, with farming and small towns and significant amounts of

forests that cover the run along the ridges. Both LJR and SC consist of numerous

long, narrow mountain ridges separated by narrow to wide valleys. Competent

sandstones occur at the crests of the ridges, with relatively softer shales and

siltstones occurring in most of the valleys.
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(e) EMC

East Mahantango Creek is located in east-central Pennsylvania, consisting of low

to moderately high linear ridges and linear valleys. The land cover is characterized

by being predominantly forested at ridge tops with agriculture dominating the

valley floors.

(f) MC

Muddy Creek is a 27.7 km tributary of the SR in York County, PA, which represents

an intensive agricultural watershed. The topography is characterized by broad,

gently rolling hills and valleys representative of the Piedmont Physiographic region.

(g) LR

Lackawanna River is the largest tributary to the North Branch of the Susquehanna

River in Northeastern Pennsylvania. The LR watershed forms a northern extension

of the Appalachian Ridge and Valley Physiographic Province. The presence

of anthracite coal has had the most significant impact on the present day LR.

The coalfields of the Lackawanna Valley were developed between the 1820s and

1850s, and ended around the 1960s. In addition to mine land, the land cover is

predominantly agricultural and forest.

4.3 Materials and Methods

4.3.1 Physics-based Hydrological Modeling

PIHM is a physics-based, fully coupled, spatially distributed, hydrologic model.

It simulates the terrestrial water cycle, including interception, throughfall,

infiltration, recharge, evapotranspiration, overland flow, unsaturated soil water,

groundwater flow, and channel routing, in a fully coupled scheme [Qu &

Duffy(2007)]. Evapotranspiration is calculated using the Penman-Monteith

approach adapted from Noah LSM [Chen & Dudhia(2001)]. Overland flow is

described in 2-D approximation of St. Venant equations. Movement of moisture

in unsaturated zones is assumed to be vertical, which is modeled using Richards

equation. The model assumes that each subsurface layer can have both unsaturated

and saturated storage components. Balance equations of the unsaturated and
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saturated zones are formed in a fully coupled way. The channel routing is

modeled using 1-D approximation of St. Venant equations. Spatially, the modeling

domain is decomposed into Delaunay triangles. The resolution of triangular

mesh allows users to customize according to the geomorphological or hydrological

characteristics of the watershed. Also, the triangles can be constrained by point

observations (e.g., streamflow, groundwater level, soil moisture, LAI) and the

watershed boundary conditions [Kumar(2009)]. The model resolves hydrological

processes for land surface energy, overland flow, channel routing, and subsurface

flow, governed by a partial differential equation (PDE) system. The system is

discretized on the triangular mesh and on projected prisms from canopy to bedrock.

The model also includes canopy interception, evapotranspiration (ET), infiltration,

and recharge within the fully-coupled system. PIHM uses a semi-discrete, finite-

volume formulation for solving the system of coupled PDEs, resulting in a system

of ordinary differential equations (ODE) representing all processes within the

prismatic control volume. The local system is assembled for the model domain,

and the global ODE system is solved using the CVODE implicit solver [Cohen &

Hindmarsh(1994)]. Detailed descriptions of the modeling theory and mathematical

formulation can be found at the PIHM website (http://www.pihm.psu.edu/) and

associated publications [Kumar(2009), Qu & Duffy(2007)].

The basic modeling strategy is to calibrate the model using national datasets

for streamflow (USGS), soil hydraulic properties (USDA), climate (NLDAS-2),

land cover (NLCD) and the NWI data. The latter is used to constrain the

shallow groundwater level across each study domain within the calibration. Once

calibrated, the model for each catchment is then used to carry out an IPCC climate

scenario to project the likely dynamics of wetland groundwater level change under a

warming climate (2045-2065). Advantages of the modeling strategy for simulating

wetland hydrology are: 1) the space-time patterns of surface and groundwater

levels can be evaluated from the climate scenario and compared to historical

conditions across each basin; 2) using the PIHMgis tool, the model can extract

hydrologic performance and detect change anomalies at each NWI site across the

basin; and 3) the distributed model and GIS tool can be used as a climate change

assessment tool. An important result of the study is that high resolution, physically

based models can be used for establishing a scientific basis for the evaluation of
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environmental change and the impact on ecosystem services.

4.3.2 Climate Scenarios for SRB

The climate scenarios used in this study were generated in the EPA-Global Change

Research Program [Najjar et al.(2009)], based on IPCC scenarios, which were used

in assessing the large-scale impacts of climate change on the physical, chemical, and

biological processes in the SRB [Najjar et al.(2010)]. The scenarios were developed

by averaging the regional (downscaled) output of seven IPCC global climate

models. All model scenarios were for the period 2046-2065 under six greenhouse-

gas scenarios considered. The IPCC annual precipitation and temperature are

plotted in Figure 4.2.

4.3.3 Proposed Methodology

In principal, a distributed watershed hydrologic model attempts to simulate

the hydrological processes for state variables and fluxes within an integrated or

coupled modeling framework. Of particular focus here is the coupled surface

and groundwater response across the catchment. Limited spatial groundwater-

table depth data were available, and the NWI maps were used to constrain the

water table during calibration (e.g., wetlands are defined as having a water table

within 30 cm of the surface for at least part of the year). USGS streamflow data

provides another constraint in the optimization process. The procedure includes

the following steps:

1. assign a-priori PIHM modeling parameters from national data sets for land

cover, soils, hydrogeology, and topography;

2. use the reanalysis forcing data to calibrate the model by following the method

of using streamflow time serials and NWI spatial maps; and

3. conduct a climate change assessment for wetland response under downscaled

IPCC climate forcing scenarios.
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The overall approach is illustrated in Figure 4.3. We only considered the climate

change scenario in this study. A future paper will explore the competing impacts

of land-use change sand climate change scenarios.

Forcing
NLDASII

Topography
GDEM

Landcover
NLCD

Soil
SSURGO

Wetland Responses

Landuse Change
 Scenarios

Temporal Constraint
USGS stream�ow

Spatial Constraint
NWI maps

Distributed Hydrologic Modeling
PIHM

Catchment
Reanalysis

Calibration

Climate Change 
Scenarios

Figure 4.3. Flowchart of the hydrologic modeling for wetland assessment.



72

4.3.4 Model Data Setup and Parameter Calibration

The Penn State Integrated Hydrologic Model (PIHM) was implemented at each

watershed. The model data input included spatial information of landcover,

soil, and geology, which were derived from national databases [Yu et al.(2013)].

The depth of shallow subsurface flow was assumed to be a uniform 5 meters

below ground surface as an initial estimate. PIHMgis [Bhatt(2012)] is utilized to

construct the unstructured mesh and to assign parameters to each mesh element.

The model data preparation processes steps are illustrated in Figure 4.4. The soil,

vegetation, and topography parameters were estimated by overlapping national

data with the model mesh domain. Also the meteorological forcing from NLDAS

II was assigned to each mesh in the domain. The resolution of mesh domain is

listed in Table 4.3.

Watershed Modeling
area (km2)

Number
of triangles in
the mesh
domain

Numbers
of channels in
the mesh
domain

Spatial
modeling
resolution
(km2)

KC 355.44 3098 342 0.115
YWC 230.70 3172 651 0.073
LJR 843.26 2089 264 0.404
SC 162.71 1986 414 0.082
EMC 422.37 2606 509 0.162
MC 360.50 4779 1399 0.075
LR 902.03 5355 1521 0.168

Table 4.3. Mesh resolution

In previous studies, PIHM was manually calibrated [Kumar et al.(2013)] based

on a relaxation experiment designed to capture drying soil matrix and macro

hydraulic properties (porosity and conductivity) and the baseflow recession to the

stream reach. In the relaxation experiment, the soil is set to saturated conditions

at the beginning of model simulation. The input is set to zero precipitation,

and the model is run until the streamflow approaches zero. The relaxation curve

in the simulation is compared to the observed streamflow during the summer

drought period (July-August). More recently, [Yu et al.(2013)] have devised a

calibration strategy that sequentially estimates hydrologic parameters (e.g., van

Genuchten parameters) based on short-term hydrological events and longer time-



73

S
o

il
 H

yd
ra

u
li

c 
P

ro
p

e
rt

ie
s

L
a

n
d

co
v

e
r 

V
e

g
e

ta
ti

o
n

 P
a

ra
m

e
te

rs
D

ig
it

a
l E

le
v

a
ti

o
n

 M
o

d
e

l
M

e
te

o
ro

lo
g

ic
a

l F
o

rc
in

g

F
ig
u
re

4
.4
.

M
o
d

el
d

at
a

se
tu

p
p

ro
ce

ss
es

of
K

C
.



74

scale processes associated with seasonal ET, which control the transpiration,

infiltration, and recharge processes. The method reduces the computational

effort in model calibration by using an evolutionary algorithm Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) and is now the main strategy for PIHM

parameter optimization [Yu et al.(2013)]. Formally, the calibration process creates

partitions of PIHM parameters into two groups: the first group of parameters

generally describes hydrologic processes influenced by hydrologic events and is

calibrated by CMA-ES, while the second group of parameters is largely influenced

by seasonal changes in energy and is calibrated using annual data. In this study,

we use both streamflow and groundwater table depth as estimated by NWI to

constrain the model. The NWI map was overlain on the model domain, and

NWI wetlands were identified for each triangle. For each triangle that included a

wetland, the average of simulated groundwater depth was constrained to be less

than 0.3 meters below the land surface. Also, daily streamflow time series were

used to calibrate the soil and subsurface hydrologic parameters. The calibration

objective function was formulated as:

e = 1−NSEstreamflow +

√√√√ 1

n

i=1∑
n

(GWi − 0.3)2 (4.1)

where e was the objective function, NSEstreamflow was the Nash-Sutcliffe model

efficiency coefficient NSE [Nash & Sutcliffe(1970)] of streamflow, n was the number

of triangles with minimum groundwater table less than 0.3 meters below land

surface at NWI map locations, GWi was the corresponding minimum groundwater

depth below land surface. The event-based calibration time period [Yu et al.(2013)]

was for a single flooding event during growing season (from May to Sep) in 2004,

and the seasonal scale calibration period [Yu et al.(2013)] was the entire year of

2004.

As a result of the CMA-ES calibration process and the NWI constraints,

the spatial and temporal model for each watershed was adequately calibrated

by constraining the groundwater table pattern with the NWI wetlands for

each catchment. The statistical criteria used to evaluate PIHM performances

included wetland prediction percentage and mean error (ME), Pearsons Correlation
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Coefficient (R), and NSE [Nash & Sutcliffe(1970)].

4.3.5 Assessment of Climate Change Impacts on Wetland

The integrated model and calibrated physical parameters developed in this paper

can be used to assess the possible impacts of global climate change on the

function of wetlands in the Susquehanna River Basin (SRB). It is critical to note

that regional drivers such as climate change scenarios involve large uncertainties

including future societal priorities, which can be linked as part of complex

environmental models. Here we focused on the sensitivity of groundwater systems

to changes in critical input of climate forcing. It is important to consider such

impacts in the analysis because of the ever-increasing influence of humans on the

physical and biological environment.

4.4 Results

4.4.1 Hydrologic Validation

The simulated and observed streamflow were plotted in Figure 4.6 and model

performance was listed in Table 4.4, including daily streamflow ME, R, and

NSE. ME is commonly used to evaluate the average systematic error among the

simulated and the observed values. Positive values of ME indicate model under-

estimation, while negative values correspond to over-estimation. R is a measure

of the strength of the association between observed and predicted values and may

take any value between -1 and 1. NSE varies from minus infinity to 1.0, with higher

values indicating better agreement. The simulated daily streamflow dynamics were

calibrated with USGS observations where available.
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Watershed Mean error
(ME)

Pearsons
Correlation Coefficient
(R)

Nash-Sutcliffe coefficient
of efficiency (NSE)

KC -3.47 0.72 0.41
YWC 10.64 0.74 0.54
LJR -8.37 0.83 0.68
SC N/A N/A N/A
EMC 18.46 0.60 0.33
MC N/A N/A N/A
LR -8.37 0.68 0.24

Table 4.4. PIHM performance in daily streamflow simulation from 2004 to 2010

4.4.2 Wetland Spatial Distribution from Reanalysis

According to the simulated daily groundwater table depth for the period 2004 to

2010, we evaluated the wetland area according to simulated depth-to-groundwater-

table dynamics (groundwater table depth was less than 0.3 meters for at least 2

weeks from May to September). The spatial constraint during calibration had

impacts throughout the entire reanalysis period (1979-present). In general, using

historical climate reanalysis to force the model, along with the NWI constraint

on the depth to water table, improved the model performance. Figure 4.7 shows

the model results for depth to groundwater less than 0.3 meters and the NWI

locations. In almost all cases, the model adequately simulates the expected water

level of the wetlands, though a few very small NWI wetlands were not identified

from the PIHM calibration.

4.4.3 Climate Change Responses

The future climate in Pennsylvania for the 21st century is projected to increase

in both temperature and precipitation, although the relationship is complex. In

this study, we explore the prospect that climate change in this region may result

in changing groundwater table responses that might affect wetlands across the

Susquehanna River basin. The approach is to use the Reanalysis period (1979-

present) to initialize the model for each basin and to simulate the IPCC climate

projection for each watershed and to use present results for the period 2045-2065.
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Figure 4.8 illustrates how the climate change projections may induce changes in

the groundwater level and thus the wetlands for each basin in our study. The

distributions of groundwater level responses were classified into wetland, upland,

and the others to examine the spatial heterogeneity of climate change impacts

(Figure 4.9). Specifically, the triangles identified as wetlands are selected as the

wetland group. And then, considering all the rest of the triangles, if the drainage

area above the triangle is less than 10% of the whole watershed, the triangle is

classified as the upland group. Last, the remaining triangles are classified as the

other group.
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Figure 4.6. Observed and simulated streamflow (2004-2010) at each of the 7 catchments
in the study.
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Figure 4.9. Distribution of groundwater table depth responses in the wetland, upland,
and the rest of the area of the watershed.
A negative change indicates the region is dryer under the climate change projection scenario.
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4.5 Discussion

In this study, national wetland geospatial data (NWI) was utilized for wetland

hydrology simulation across 7 watersheds in SRB. The study developed historical

simulations (1979-present) resulting in an online GIS watershed data set and

wetland database containing information about the physical hydrological dynamics

in each wetland area. The objective of the second part of this work was to assess

the impact of climate change using the IPCC climate projections (2045-2065) on all

wetlands in the NWI located within the 7 catchments. We expect that the future

wetland projections developed in this study will also be subject to human-induced

activities related to changes in land cover and land use. Simulation with scenarios

that include land cover-use dynamics is an important area of future study.

4.5.1 How Does Physics-based Hydrologic

Modeling Explain Groundwater and Stream Water

Interaction?

Physics-based hydrologic modeling resolves the whole watershed into landscape

mesh elements. The water movement equations govern the fully coupled, dynamic

hydrological processes across the entire domain, providing insight into the spatial

sources of runoff. By considering groundwater table dynamics in the calibration

process, the model can better simulate surface and near-surface hydrological

process [Ebel & Loague(2006)]. Additionally, spatial information from the NWI

map further refines model performance.

Another assumption used in the model development was the uniform subsurface

layer for all the watersheds. A 5-meter depth was assumed as the bottom boundary

of shallow groundwater flow throughout the whole watershed. Other studies have

suggested that most of the active flow zone in the SRB is relatively shallow ( [Fan

et al.(2013)] suggest less than 10 meters). The assumed 5-meter depth may be a

minimum but proved to be sufficient to handle the recharge and baseflow processes

in the watershed.
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4.5.2 Differences between NWI and Hydrologic

Identification

The NWI maps are prepared through conventional photointerpretation techniques

as well as through field checks [Tiner(2002)]. Studies have shown that if an

NWI map indicates the presence of a wetland in a given area, it is highly

likely that a wetland is located there [Johnston & Meysembourg(2002), Kudray

& Gale(2000), Maxa & Bolstad(2009)]. It has also been shown that unmapped

wetlands, particularly in favorable landscape positions such as along stream in

narrow valleys or in depressions, do exist [Tiner(2002)]. Catchment reanalysis data

preserved the spatial groundwater table depth pattern and also provided a likely

mapping for exploring missing wetlands in the NWI, though the model results from

reanalysis may also tend to overestimate the existence of wetlands. The conclusion

then is that both the model and the NWI maps tend to err more by omission that

by commission [Tiner(2002)].

4.5.3 Groundwater Level Sensitivity to Climate Change

Average groundwater level response to climate change was subtle due to the

combined effects of increased precipitation and increased evapotranspiration. The

advantage of distributed modeling is that it enables an analysis of spatial location:

wetland, upland, and the others. In general, the model results suggest that upland

groundwater levels and thus upland wetlands are more sensitive to the IPCC

climate change projections. It will be important in the future to expand the

research to include land-use change as well as the overall impact on water and

ecosystem services.

4.6 Conclusion and Outlook

In this study, the first mesoscale-scale watershed wetland assessment of

groundwater table dynamics under climate change using a physics-based

hydrological model PIHM is presented for high-resolution geospatial data, climate
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reanalysis, and IPCC projections. A special focus of the study was on national data

sources, geospatial model behavior constraints, wetland hydrology interpretation,

and watershed hydrological reanalysis. This assessment is especially important for

data and model applications in the environment of national requirements [Duffy

et al.(2011)]. Furthermore, temporal and spatial wetland dynamics modeling using

hydrological modeling-driven method provides an alternative for wetland hydrology

research.

The wetland maps in these watersheds were generated through physics-based,

distributed hydrological modeling. To summarize, shallow groundwater system

modeling was able to adequately reproduce the temporal and spatial wetland

hydrology dynamics in the model as well as the near surface hydrological processes

and channel streamflow processes. The shallow groundwater demonstrated

complex responses to the climate change, where upland groundwater levels decrease

significantly under the climate scenario 2046-2065.

The inherent uncertainty related to meteorological forcing, watershed physical

representation, bedrock depth, and the climate scenario itself remains an important

area of future work. In addition, land-use dynamics should be incorporated

in the modeling framework. In order to improve our model representations,

it will be necessary to have higher-resolution data with improved strategies for

parameterization.



Chapter 5
Modeling Dynamic Ecosystem

Processes: A Case for Improving

Hydrological Predictability

5.1 Introduction

Terrestrial water and nutrient cycling are generally described as interacting

hydrological and biogeochemical processes, with various assumptions about the

degree and rate of process coupling. For example, biogeochemical processes are

often assumed to be relatively slow in comparison to rainfall-runoff dynamics, and

vegetation is often assumed to be fixed or to have only seasonal changes in the

energy-water conditions and negligible interannual variability. These assumptions

are adequate for predictions during rain events where short-term changes in

vegetation are unlikely. However, for longer-term hydrologic predictions, the role

of vegetation and soil biophysical contributions may play a more dominant role

[Brolsma & Bierkens(2007), Miller et al.(2010), Smucker & Hopmans(2007)].

The current state of the Penn State Integrated Hydrologic Model (PIHM) was

developed for a seasonally fixed canopy that uses the National Land Cover

Data (NLCD, [Homer et al.(2007)] ) and climate forcing reference parameters

[NLDAS(1999)]. The basic parameters used for the calculation of vegetation water

use are: the leaf area index (LAI) and the roughness length (RL). Two additional
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parameters, the field capacity and wilting point, are also estimated to calculate the

vegetation water use. Note that LAI is a measure of canopy biomass used to predict

photosynthetic primary production and evapotranspiration and is a reference tool

for plant growth. Although the fixed-season strategy used in PIHM is simple and

captures some of the important seasonal dynamics necessary for water balance

studies, the approach has several drawbacks. Namely: 1) the approach does not

capture annual variations in the emergence (phenology) and senescence of forest

and plant growth during the growing season; and 2) fixed LAI cannot by definition

capture inter annual or longer time scale vegetation variations from growth and

senescence. Both of these factors may be important to long term water balances

in catchments.

At Shale Hills, during streamflow observations the 1990s drought, late spring and

summer flow in the outlet weir completely dried up and did not recover until

late in the fall, even though the stream flowed all summer during a study in

the 1970s [Lynch & Corbett(1985)]. This difference might be explained by a

reduction in precipitation during the 1990s or by a significant inter annual, or

even decadal variability of tree water use. In fact, both of these explanations can

be tested by implementing a dynamic vegetation model, rather than using a fixed

seasonal pattern of vegetation parameters. [Wolf et al.(2008)] linked an ecosystem

model with a hydrological model to test the sensitivity of the ecosystem model to

hydrology and temperature. The results demonstrated that soil moisture and soil

temperature are the most sensitive driving factors of carbon fluxes, particularly of

soil carbon emissions. [Kiniry et al.(2008)] implemented a field-scale plant model

to improve hydrologic transport modeling results of SWAT (Soil Water Assessment

Tool). [Peng et al.(2013)] coupled a vegetation model with a distributed hydrologic

model to assess future ecohydrological responses of climate change. Theses studies

demonstrated the role of dynamic vegetation modeling in the study of hydrologic

cycles.

Previous chapters discussed a method to constrain parameters for watershed

modeling. This chapter links the physics-based watershed model (PIHM) and

an ecophysiological model (Biome-BGC) to gain insight into the dynamic role of

vegetation for hydrologic modeling. The chapter deals with the long-term changes

in the water cycle by vegetation and will (a) demonstrate how biogeochemical
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models and vegetation dynamics might resolve the inter annual hydrologic

variability of the catchment and (b) evaluate how dynamic vegetation regulates

the interaction between water and carbon cycles.

5.2 Overview of Biome-BGC

Biome-BGC is a one-dimensional model describing the carbon (C), nitrogen (N),

and water (H2O) states and fluxes of a plant functional type (PFT). The PFTs

generally include: evergreen needle leaf forest (ENF), shrub, deciduous broad

leaf forest (DNF), deciduous Broad leaf forest (DBF), C3 grass (C3G), and C4

grass (C4G). In this study we used Biome-BGC version 4.1.2, provided by Peter

Thornton at the National Center for Atmospheric Research (NCAR) and by the

Numerical Terradynamic Simulation Group (NTSG) at the University of Montana.

The processes simulated in Biome-BGC include photosynthesis, respiration

(autotrophic and heterotrophic), evapotranspiration, decomposition, the final

allocation of photosynthetic assimilate and mortality [Running & Hunt(1993)].

Biome-BGC first models the phenology of the systems based on the input

meteorological data. Then the rest of the processes are simulated at daily

and annual scales. Daily processes related to water flux include interception,

evaporation, transpiration, infiltration, snow melt, and outflow. Daily processes

related to the carbon cycle include photosynthesis, leaf, stem, and root respiration,

and respiration of soil and leaf litter [Running & Hunt(1993)]. The model simulates

annual processes including storage and allocation of free carbon, and allocation

and loss of free nitrogen. The allocation of carbon content and metabolism is

parameterized by the ratio between leaves, stems, and roots, and depends on the

specific plant. Free nitrogen enters the soil and litter. Then the mineralized N is

lost from the system either through leaching when there is outflow or through bulk

denitrification at a constant rate.
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Common Scientific
Species

Stem Total basal
name name number area(m2)

Sugar maple Acer saccharum DBF 122 8.40
Pignut hickory Carya glabra DBF 122 7.75
Mockernut Carya tomentosa DBF 178 13.31
Eastern white pine Pinus strobus ENF 59 7.02
Virginia pine Pinus virginiana ENF 96 7.39
White oak Quercus alba DBF 282 26.77
Chestnut oak Quercus prinus DBF 558 47.50
Red oak Quercus rubra DBF 287 39.25
Eastern hemlock Tsuga canadensis ENF 164 15.76
Other 249 25.08
DBF: deciduous broadleaf forest; ENF: evergreen needleleaf forest.
Data were retrieved from [Eissenstat(2008), Meinzer et al.(2012)]

Table 5.1. Stand characteristics at SSHCZO.

5.3 Biome-BGC Modeling at SSHCZO

Vegetation at SSHCZO is mixed forest at mature status. Major species

include Quercus prinus, Quercus rubra, Quercus alba, Tsuga canadensis, Carya

tormentosa, Acer saccharum, Carya glabra, Pinus sstrobus, and Pinus virginiana

[Meinzer et al.(2012), Naithani et al.(2013)]. The tree survey results are shown in

Table 5.1. The parameters (Table 5.2) for Biome-BGC modeling are obtained from

[White et al.(2000)]. The modeling results are compared with flux tower estimated

NEE (Figure 5.1). The modeling meteorological data is from 1904 to 2013. The

histogram of phenology and vegetation dynamics demonstrates significant inter-

annual variability (Figure 5.2, Figure 5.3).
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Parameter Chestnut
Oak

Red
Oak

White
Oak

Unit

transfer growth period as fraction
of growing season

0.2 0.2 0.2

litter-fall as fraction of growing
season

0.2 0.2 0.2

annual leaf and fine root turnover
fraction

1 1 1 year−1

annual live wood turnover fraction 0.54 0.54 0.54 year−1

annual whole-plant mortality
fraction

0.003 0.003 0.003 year−1

annual fire mortality fraction 0.001 0.001 0.001 year−1

new fine root C:new leaf C 0.1 0.1 0.1
new stem C:new leaf C 1.32 1.32 1.36
new live wood C:new total wood C 0.15 0.15 0.279
new coarse root C:new stem C 0.1 0.1 0.1
current growth proportion 0.6 0.6 0.6
C:N of leaves 35 33.1 27.2 kgCkgN−1

C:N of leaf litter 98.7 61 62.5 kgCkgN−1

C:N of fine roots 42 42 42 kgCkgN−1

C:N of live wood 50 50 50
C:N of dead wood 742 479 451
leaf litter labile proportion 0.39 0.308 0.324
leaf litter cellulose proportion 0.36 0.425 0.474
leaf litter lignin proportion 0.25 0.267 0.202
fine root labile proportion 0.3 0.3 0.3
fine root cellulose proportion 0.45 0.45 0.45
fine root lignin proportion 0.25 0.25 0.25
dead wood cellulose proportion 0.76 0.75 0.76
dead wood lignin proportion 0.24 0.25 0.24
canopy water interception
coefficient

0.001 0.001 0.001 LAI−1d−1

canopy light extinction coefficient 0.4 0.4 0.4
all-sided to projected leaf area
ratio

2 2 2

canopy average specific leaf area 19.9 26.2 20.4 m2kgC−1

ratio of shaded SLA: sunlit SLA* 2 2 2
fraction of leaf N in Rubisco 0.2 0.2 0.2
maximum stomatal conductance 0.006 0.006 0.006 ms−1

cuticular conductance 0.00001 0.00001 0.00001 ms−1

boundary layer conductance 0.005 0.005 0.005 ms−1

leaf water potential: start -0.3 -0.3 -0.2 MPa
leaf water potential: complete -2 -2.2 -2 MPa
VPD: start 169 169 169 Pa
VPD: complete 2100 2100 2100 Pa

Table 5.2. Eco-physiological parameters for Biome-BGC at SSHCZO.
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Figure 5.1. Biome-BGC simulated NEE compared with flux tower estimation.
The dynamics of NEE in spring are well captured by Biome-BGC.
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Figure 5.2. Biome-BGC simulated inter-annual variability of max LAI of 3 dominant
tree species at Shale Hills.
The results suggest that due to meteorological variability from 1904 to 2013, the annual max
LAI has significant variability.
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Figure 5.3. Biome-BGC simulated inter-annual variability of phenology.
For deciduous woody plants, the start of growing season is determined by the precipitation and
temperature, and the end of growing season is determined by the day length and temperature.
The results in 1904 to 2013 suggested that the start of growing season has significant variability;
however, the end of growing season is the 305th day of the year in most years.
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5.4 Modeling Vegetation Dynamic for PIHM

Simulation

The Forest Hydrology group at The Pennsylvania State University conducted a

series of hydrologic irrigation experiments at The Shale Hills in 1974 [Lynch &

Corbett(1985), Lynch(1976)]. The objectives of the experiments were to determine

the physical mechanisms of runoff and streamflow generation at the upslope

forested watershed and to evaluate the effects of antecedent soil moisture on the

runoff peak and timing. Recently, a program of research using Earths Critical

Zone Observatories (CZOs) has been initiated, and Shale Hills is one the CZOs:

the Susquehanna-Shale Hills Critical Zone Observatory (SSHCZO), which focuses

on hydrologic flow paths and timescales, as well as the regolith formation and

ecosystem dynamics within a small, forested catchment. The modeling studies

mainly focused on the seasonal scales, such as land surface energy processes

[Shi et al.(2013), Shi et al.(2014b)] and antecedent moisture condition [Qu &

Duffy(2007)]. The inter-annual variability of vegetation dynamics could be resolved

by nudging vegetation parameters according the water budget of the modeling

period. For the long-term modeling, the dynamic vegetation simulation will resolve

the inter-annual variability of plant growth in way of physical meaning. Here, the

continuous simulation of PIHM from 1974 to 2013 was conducted to test the role

of dynamic vegetation in the modeling of long-term hydrological cycles.

By default, PIHM uses NLDAS monthly vegetation parameters [NLDAS(1999)]:

based on UMD classification [Hansen et al.(2000)]. Then, the vegetation

parameters are mapped to NLCD 2006 classification [Bhatt(2012)]. Clearly,

Biome-BGC simulated results imply that vegetation phenology is dependent on

species and the surrounding environment (e.g., soil temperature, day length).

Hence, I linked Biome-BGC and PIHM through vegetation parameters to test

the impact of dynamic vegetation parameters in PIHM simulation.

PIHM simulations were forced by default LAI and Biome-BGC simulated LAI

to simulate hydrologic response of the irrigation experiment in 1974 [Lynch(1976)].

The result suggested that phenology could lead to major errors in simulated peak

flow of PIHM (Figure 5.4).
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Figure 5.4. PIHM-modeled streamflow sensitivity to LAI (default LAI and modeled
LAI). Note that using the fixed-seasonal LAI tends to overestimates the peakflows later
in the 1974 experiment.

5.5 Implications on Further Coupling of Biome-

BGC and PIHM

Further coupling schemes should include hydrological processes coupling (Figure

5.5) and lateral redistribution of carbon and nitrogen. The water storage and fluxes

have impacts on the vegetation growth, and the lateral routing of subsurface flow

plays a key role in the redistribution of nutrients. The challenge is to resolve

multi-scale ecosystem processes appropriately in a hydrologic framework. Here,

we used the distributed water cycle from the simulation results of PIHM to force

the modeling processes of Biome-BGC. The results showed the spatial controls of

vegetation, soil properties and topography on the soil carbon (Figure 5.5).



94

W08419 QU AND DUFFY: MULTIPROCESS WATERSHED SIMULATION W08419

H2O Cycle by PIHMLitter

Coarse
Woody
Debris

Soil

C and N Cycle
by Biome-BGC 

Maintenance Respiration 

Photosynthesis 

Decomposition 

Allocation Growth Respiration 
Mortality 

Figure 5.5. Flow chart of hydrological coupling between PIHM and Biome-BGC.

gC/m2

< 20

21 - 30

31 - 40

41 - 50

51 - 60

61 - 70

71 - 80

81 - 90

91 - 100
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5.6 Conclusion

In this study, the PIHM and Biome-BGC models were linked through vegetation

dynamics and tested at a headwater catchment. The vegetation dynamics at Shale

Hills were simulated through Biome-BGC, and then the simulated daily LAI was

used in the long-term hydrologic simulation by PIHM. Simulated peakflow and low-

flows were improved in the linked model. The result of streamflow suggested that

inter annual vegetation dynamics and succession could have significant impacts on

watershed hydrology. This test was successful in demonstrating the importance of

dynamic vegetation in watershed models. In addition, the spatial pattern of the

carbon dynamic was modeled by coupling the distributed water cycle with Biome-

BGC. Further coupling of hydrologic processes needs to include the important

effects of multi-scale ecosystem processes that emphasize key connections between

watershed hydrology and vegetation dynamics. First, spatial and temporal

variability in soil water has impact on vegetation growth. Second, the lateral

water movement determines the nutrient redistribution within the watershed, and

future work should fully couple this factor in the PIHM Transport code. Third, the

vegetation dynamics in Biome-BGC could improve the plant-water-use calculation

in PIHM, improving the peak-flow simulation and related hydrologic predictions.



Chapter 6
Summary and Future Work

6.1 Summary

Three key objectives have been achieved in this research: (a) a new strategy

for estimation of parameters in the physics-based, fully-coupled watershed model

PIHM; (b) application of the parameter estimation strategy to watershed and

wetland modeling for the climate reanalysis period 1979-2009 and IPCC climate

projection period 2045-2065; (c) an assessment of the importance of dynamic LAI

in PIHM on the runoff response in the Shale Hills CZO.

Integrated environmental models seek to simulate coupled environmental processes

and to assess management practices. As the model complexity and parameter space

increase, the calibration of such models presents increased challenges to users and

requires considerable modeling experience. In this research, different calibration

cases demonstrate that incorporation of available data in calibration can effectively

increase the simulation results of multi-scale, multi-process environmental systems,

which will have important implications for watershed management.

The calibration of PIHM used a time-scale partition strategy: event-scale

group and seasonal time-scale group. The event-based group (EG) parameters

were calibrated first using the CMA-ES optimization algorithm targeting runoff

responses, followed by the seasonal group (SG) calibration targeting water budget.

A general conclusion of this study is that the 2-scale partition for parameter

estimation according to the dominant time scales of the system provides a useful

way to isolate dynamic processes and integrate detailed behavior within the model.
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Validation was extended without degrading the model performance.

Physics-based models simulate not only discharge rate at outlet but also spatial

patterns of soil moisture, evapotranspiration, and groundwater table. In Chapter 3,

the weighting strategy between multiple calibration targets is illustrated. First, the

informativeness of each calibration target is determined by the model-performance

correlation. Second, the weighted objective function is formulated based on the

informativeness from the previous step. Third, the weighted function is used

to constrain the model with multiple observations. The application at SSHCZO

suggested a satisfactory compromise between streamflow, water table depth and

ET was achieved with the weighting strategy.

Another spatial data application is the freshwater wetland modeling study in

Chapter 4. This study demonstrates the use of spatial maps for modeling near-

surface wetland hydrology. The model was constrained not only by the time serial

of streamflow, but also by the spatial pattern of the groundwater table, which

utilized the information from the National Wetland Inventory map. Expectedly,

the wetland derived from a simulated spatial groundwater pattern was consistent

with the NWI. Based on the well-calibrated modeling system, climate change

impacts on shallow groundwater were evaluated. The simulation results suggested

heterogeneous responses to climate change: the decrease of upland groundwater

level will be more significant under the climate scenario 2046-2065 than the

decrease of wetland groundwater level.

Chapter 5 is the long-term modeling study to test the capability of the vegetation

module. The default PIHM vegetation dynamics were represented by monthly

parameters repeated year by year. This method of representation could cause

model discrepancy for the inter-annual variability of vegetation dynamics. Hence,

the dynamic vegetation processes was reproduced by an ecosystem process

model: Biome-BGC. The simulation, by linking Biome-BGC and PIHM, suggested

improved streamflow prediction during the growing season.

In addition to the four papers presented in this thesis, the C code package

PIHM-PCS is developed. PIHM-PCS targets PIHM parameter optimization

with both the single objective of streamflow and weighted objective of multiple

observations. Parameterization and calibration make up a large part of the

hydrological modeling literature. PIHM-PCS demonstrates an idea to simplify the
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calibration according the model and data. The processes-and-parameters partition

divides calibration into several steps in a sequential workflow. When the simulation

target contains different kinds of measured variables, the informativeness-based,

weighted-objective function provides an idea of partitioning the simulation target

into quantitative evaluation of each variable within the target. The study

case at SSHCZO demonstrated a framework used to calibrate a high-resolution,

distributed hydrologic simulation of a catchment where multiple observations of

hydrological variable are recorded to constrain the understanding of hydrological

processes. Currently, the PIHM-PCS has been applied in many other watershed

modeling studies, and the results have demonstrated the robustness of PIHM-PCS.

6.2 Future Work

In Chapter 2, a method was developed for distributed parameter estimation that

takes advantage of time-scale separation in governing processes. It was found that

parameters could be divided into one group that was sensitive to hydrologic events

and another group controlling seasonal energy dynamics. However, in some cases,

different combinations of parameters could generate the same runoff responses.

Future study should evaluate parameter sensitivity and uncertainty.

The weighting strategy presented in Chapter 3 provides an efficient method

for handling multiple constraints of model behavior. The informativeness was

defined to understand the importance of observation in constraining model

parameters, and the model performance correlations are used for the calculation

of informativeness. The results suggested an informativeness order: streamflow >

downslope groundwater table > upslope groundwater table > evapotranspiration.

To further improve the applicability of informativeness, a study of information

conflict and redundancy should be considered when the model is constrained by

increasing observation.

Modeling shallow groundwater dynamics for wetland study demonstrated the need

for a distributed watershed model in wetland hydrologic research. The focus of the

study was on data availability, model behavior constraints, wetland hydrologic

interpretation, and watershed hydrological reanalysis. It remains unknown if we

could confidently improve the NWI by the PIHM predicted wetland area and how
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to understand the assessment results of the groundwater table responses to the

future climate. Uncertainty quantification is a critical component in the description

and attribution of the wetland hydrology.

Chapter 5 demonstrates the importance of vegetation dynamics and the improved

hydrologic response when linking Biome-BGC and PIHM. In this study, it was

shown that the vegetation dynamics is an important element in both hydrologic

cycles. In the future, a fully coupled vegetation-biogeochemical-watershed model

will support hydro-ecological predictions, including diversity distributions of the

types of regional vegetation, and control net primary productivity and carbon

cycling. On the other hand, moisture distribution in the water cycle is significantly

impacted by vegetation via hydrological processes, such as interception and

evapotranspiration. There is a need for the development of a coupled, dynamic

vegetation module for understanding the water and carbon cycles.
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[Wösten et al.(2001)] Wösten, J. H. M., Pachepsky, Y. A. & Rawls, W. J. (2001)
Pedotransfer functions: bridging the gap between available basic soil data
and missing soil hydraulic characteristics. Journal of hydrology 251(3):123–
150.

[Yi et al.(2009)] Yi, S., McGuire, A. D., Harden, J., Kasischke, E., Manies, K.,
Hinzman, L., Liljedahl, A., Randerson, J., Liu, H. & Romanovsky, V. (2009)
Interactions between soil thermal and hydrological dynamics in the response
of alaska ecosystems to fire disturbance. J. Geophys. Res 114:G02015.

[Yu et al.(2013)] Yu, X., Bhatt, G., Duffy, C. & Shi, Y. (2013) Parameterization
for distributed watershed modeling using national data and evolutionary
algorithm. Computers & Geosciences 58:80–90.



116

[Yu et al.(2014a)] Yu, X., Duffy, C. J., Jason, K., Wade, C., Bhatt, G. & Shi,
Y. (2014a) Reanalysis of water and carbon cycle models at a critical zone
observatory. In: Remote Sensing of the Terrestrial Water Cycle. p. in press.
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