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Abstract 

 
Quantification of soil hydraulic functions is essential to catchment studies.  While 

soil water retention has been widely studied, a catchment-wide characterization of soil 

water retention parameters has not yet been commonly done.  In this study, I report the 

spatial patterns of soil water retention parameters, obtained through in situ monitoring 

data, as a function of soil type, landform unit, and soil depth in the forested Shale Hills 

catchment in central Pennsylvania.  Soil water matric potential and volumetric moisture 

content were collected in 2005-2010 at 61 sites throughout the catchment and at depths of 

10, 20, 40, 80, and 100 cm.  These data were fitted with the van Genucthen, Campbell, 

and Gardner soil water retention equations.   Parameters from these curves were then 

analyzed in connection to soil-terrain attributes.  Based on various statistical analyses, 

topographic wetness index, depth to bedrock, and curvature were found to have 

significant influence on soil water retention parameters across this catchment.     

The spatial relationship of the van Genuchten parameters across the catchment at 

10, 20, 40, 80 and 100 cm depths were quantitatively analyzed and compared.  An 

increase in spatial variance from near surface 20 cm to the deeper 80 cm was evident in 

saturated moisture content as the semi-variogram range increased from 14.3 meters to 

31.2 meters.  Moisture retention parameters were estimated across the catchment at all 

available depths with regression kriging using Bayesian statistics to optimize spatial 

model parameters.  These maps would be used to inform hydrologic modeling and 

ecological studies for the Shale Hills catchment.    

A foundation for delineating functional units of the catchment with similar 

hydrological, pedogenic, and topographic properties (called Hydropedological Functional 

Units or HFUs) was established in this study through analyzing:  1) soil moisture profile 

storage maps spanning 2008 through 2010, 2) catchment-wide eletromagnatic induction 

surveys from wet and dry seasons, 3) maps of topographic variables, and 4) landscape-

scale soil retention parameters and other basic soil properties. Five apparent HFUs were 

identified based on the spatially and temporally extensive datasets: 1) Regression-kriged 

maps of depth to bedrock and solum total moisture storage at saturation were used in a 

combined principal component and fuzzy c-means clustering to quantitatively delineate 
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three hillslope HFUs; and 2) Two additional HFUs were delineated using slope value, 

elevation, and upslope contributing area.  Total five HFUs were then compared with soil 

series map and landform units delineated using Park and vande Giesen’s method (2004).  

All three delineation methods were compared with observed soil moisture data.  Results 

showed that the HFUs out-performed the soil series map and the landform units in 

depicting soil solum moisture storage in general linear models.   

This study shows that catchment-wide characterization of saturated moisture 

content can be integrated with topography and depth to bedrock to delineate 

Hydropedological Functional Units. Delineated HFUs generally predict soil moisture 

patterns more accurately than soil series and landform units.  This research confirms that 

the delineation of sub-catchment units with soil depth, topographic variables, and soil 

properties can sufficiently separate a catchment into units with similar topography, soil 

properties, and hydrologic functions.              
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Chapter 1:  Introduction  

 

 Hydropedology endorses scientific pursuits of integrating soil, hydrology, and 

landscape across scales (Lin et al, 2008, Lin, 2010). The use of spatial-temporal patterns 

of soil moisture in relation to terrain attributes and soil properties is an effective means of 

deciphering the complex interactions and dynamics of landscape-soil-hydrology 

relaionships.  A better understanding of how soil properties and terrain attributes control 

hydrologic processes will facilitate improved understanding of hydrologic cycle, natural 

resource management, and pollution assessment and control.   

 Effective land use management is becoming increasingly imperative as human 

population increases and natural resources diminish.  General land management practices 

do not adequately characterize the heterogeneity of soil properties and hydrologic 

functions across the landscape and consequently do not effectively protect environmental 

quality and conserve natural resources.  Precision mapping of soil-hydrological properties 

across the landscape will facilitate more efficient and sustainable land management 

decisions (Lin et al., 2005; Ticehurst et al, 2007).  For example, detailed maps of 

topography, soil moisture, and soil properties could be used to quantitatively delineate a 

watershed into sub-units with similar landscape features, soil properties, and hydrologic 

function.  Such sub-units are termed “Hydropedological Functional Units (HFUs)” in this 

study, which provide building blocks for enhanced spatially-distributed soil and 

hydrologic modeling.   

 Soil science research has moved beyond the classical factorial analysis framework 

of Jenny’s (1941) by incorporating flow and transformation of matter and energy as a 

means to quantitatively distinguish soil-related natural processes and formation 
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(Misnasny et al, 2008; Rasmussen et al, 2005).  Hydropedology, for example, recognizes 

the importance of hydrologic processes in soil formation and ecological functions and 

seeks to quantitatively understand how landscape features and soil properties exert a 1
st
-

order control on hydrologic and ecological processes and, at the same time, how 

hydrologic and ecological processes feedback to soil formation, evolution, and functions 

(Lin et al., 2005, 2006, 2008).  Hydropedology also emphasizes continuous monitoring 

and realistic modeling based on in situ field data (Baggaley et al. 2009; Lin, 2006; Lin et 

al., 2008). Hydropedology is also an important contributor to the holistic study of the 

Earth’s Critical Zone.  The Critical Zone is that portion of Earth’s near-surface crust from 

the vegetation top down to the aquifer bottom, in which complex interactions involving 

rock, soil, water, air, and living organisms regulate the natural habitat and determine the 

availability of nearly-every life sustaining resources (NRC, 2001).   

  Hydropedologic research utilizes mapping to effectively portray soil properties in 

a landscape context. Hydropdeological Functional Units (HFUs) are defined as landscape 

units with similar topographic, soil structural and soil-hydrologic properties (Lin et al, 

2006b; Lin et al, 2008).  HFUs represent divisions on the landscape with similar soil 

water retention, soil depth, soil moisture patterns, and soil morphologic features;  they 

may greatly enchance soil mapping and hydrologic modeling since they represent 

divisions in the landscape with optimally low variability in soil moisture patterns, soil 

texture, and soil hydrologic characteristics (Lin et al., 2008).  The delineation of HFUs by 

using topographic variables is possible, because soil moisture distribution variation 

across a catchment has been correlated with topographic variables such as elevation, 

slope, aspect, and depth to bedrock (Baggaley et al, 2009; Takagi, 2009).  
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Baggaley et al. (2009) have shown in their study that 80 % of soil moisture 

variation across a landscape in the UK was explained with topographic indices and soil 

map units.. Zhu et al (2010b) were able to integrate ECa values collected during EMI 

surveys, depth to bedrock and terrain indices through using geo-statistics to obtain the 

most optimum soil mapping accuracy for an agricultural landscape.  Research at Shale 

Hills has also found correlations between soil properties and topographic indices with soil 

moisture patterns (Takagi, 2009).  Takagi (2009) also found that topographic properties, 

such as slope and depth to bedrock, are useful regressors in predicting soil moisture in 

Shale Hills.  Research from Winter (2001) has shown that landscapes may be partitioned 

into landscape-hydrologic units by defining areas of similar topography.  As the HFUs 

express information regarding quantitative soil hydrologic functions across a landscape, a 

necessary task in the delineation of HFUs is to derive at least one of the two major soil-

hydrologic functions: soil water retention or soil hydraulic conductivity.  Mapping 

hydrologic soil properties would then relate soil hydrologic characteristics to a landscape- 

or catchment-scale.  If topography and soil properties are correlated with soil moisture in 

a given landscape, maps of soil depth and topographic indices must be integrated with 

maps of soil hydrologic characteristics to delineate HFUs for that landscape. 

The objective in this thesis research is to characterize soil water retention across 

the Shale Hills catchment at multiple depths, and to delineate Hydropedological 

Functional Units based on a combination of landscape features, terrain attributes, soil 

properties (including basic soil properties and soil water retention parameters), and soil 

moisture storage change over a two year time period (2008-2010) for the Shale Hills 

Catchment – a recently established national Critical Zone Observatory. 



 4 

 

1.1  THESIS OBJECTIVES 

 

 More specifically, the objectives of this study include the following: 

 

1.  Investigate soil-water retention function across the 7.9-ha Shale Hills 

Catchment and its spatial patterns and controls by soil types, soil depths, soil properties, 

terrain attributes, and landform features;    

 

2.  Delineate Hydropedological Functional Units for the entire Shale Hills 

Catchment using all the available geospatial data of soil-water retention parameters, basic 

soil properties, topographic attributes, and other landscape features; and 

 

3. Validate the delineated HFUs in explaining the observed soil moisture spatial-

temporal patterns, and compare the HFUs with soil series map and landform units 

delineated with the method of Park and Vande Giesen (2004). 

 

 

 

1.2  Literature Review on Catchment-Scale Soil Water Retention 

Characteristics 

 

 Soil moisture retention is one of two fundamental soil-hydrologic processes and 

has received much attention in soil physics, engineering and ecological modeling.  The 

moisture retention function quantitatively describes a soil’s moisture holding capacity, 

the relative influence of gravimetric vs. capillary moisture on water retention in a soil, 

and the hydrologic characteristics of soil pore space.  Soil moisture retention parameters 

have been used in various applications such as hydrologic models depicting runoff, 

streamflow, and infiltration rates.  While soil water retention function has been 



 5 

investigated extensively in various soils under diverse climates, topography, and 

vegetation (e.g., Fredlund and Xing, 1994; Hodnett and Tomasella, 2002; Pachepsky et 

al, 2006; Vereecken et al, 2007), a catchment-wide characterization of soil water 

retention has not been commonly reported.  

Past catchment-wide soil moisture retention studies have been based on indirect 

modeling through developing pedo-transfer functions (PTFs) from basic soil property 

data obtained from soil cores (Fieke et al, 1996; Romano and Santini, 1997; Herbst and 

Diekkruger, 2001; Herbst et al, 2006) or indirect modeling from saturated hydraulic 

conductivity data made form soil core samples (McDonnell, 1990; Porebska et al, 2006; 

Botros et al, 2009).  Indirect modeling from in situ hydraulic conductivity data collected 

on field plots (Kool and Parker, 1988) or point locations (Inoue et al, 1998) has been 

accomplished, but these experiments did not span an entire catchment, nor were they 

temporally extensive.  

The use of PTFs has been extensively employed to predict soil hydraulic 

parameters based on soil texture and structure data (Dashtaki et al, 2010; Vereecken et al, 

2010).  Direct modeling for moisture retention from data collected in situ has been 

accomplished for field plot scale experiments (Jabro et al, 2009).  Jabro et al, 2009 used 

six 117 cm x 117 cm frames with TDR and Water Mark sensors placed in two opposing 

corners to directly collect soil moisture content and soil water pressure data, respectively.  

The plots were saturated and then measurements were taken up to 450 hours after 

infiltration of all moisture.  Although it was concluded that this method is accurate in 

collecting soil moisture retention data directly, the field experiments were not temporally 

extensive and did not span an entire catchment.  Comprehensive direct modeling of soil 
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moisture retention for an entire catchment at multiple depths requires a temporally- and 

spatially-extensive field monitoring campaign.   

 Acquiring data for direct retention modeling is time-consuming and costly 

(Minasny et al, 1999; Romano and Palladino, 2002)  Monitoring campaigns that conduct 

temporally-extensive collection of volumetric moisture content and matric potential 

facilitate the direct modeling of water retention curves.  Should resources and time be 

available for the establishment of a dataset with a temporally-extensive account of 

volumetric soil moisture and soil matric potential, then direct modeling of soil water 

retention is possible.  Hydrologic retention parameters obtained through direct 

monitoring would offer a direct analysis of hydraulic parameters to soil texture, soil depth 

and topographic variables without having to account for various sources of uncertainty 

that inevitably arise from indirect modeling or using PTFs (Minasny et al, 1999).    

 Romano and Palladino, 2002 found that terrain indices are correlated with 

hydraulic retention parameters obtained through PTFs during research in a catchment 

located in Basilicata Region, Italy.  Herbst et al, 2006 used geostatistics in predicting soil 

water retention parameters obtained from PTFs across the Berrensiefen catchment, east of 

Cologne, Germany.  They concluded that retention parameters should be modeled at 

point locations first followed by interpolation across space with terrain variables, rather 

than using correlated terrain variables to predict retention parameters alone.  Lin et al, 

2006 found that terrain indices exert a direct control on soil moisture patterns in a 

temperate forested catchment in Pennsylvania.  Baggaley et al, 2009 confirmed that 

terrain does control soil moisture processes on a landscape scale in three different fields 

in Bedfordshire, UK.   
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 Past soil spatial modeling has grouped landscape positions based on terrain and 

soil properties (McBratney et al, 2003).  Hydrologic research has grouped locations based 

upon hydrologic data into similar landform groupings using ordinal analysis (Kumar and 

Duffy, 2009).  Point locations at different depths across a catchment with defined soil 

water retention parameters, terrain information and soil properties may therefore be 

clustered into similar hydrologic-soil groupings as well, using variables that exert 1
st
 

order controls on hydrologic processes.  Identifying 1
st
 order controls on processes is a 

key step for classifying groupings of similar soil-hydrologic point locations. 

 As catchment-wide characterization of directly modeled soil water retention 

parameters in situ is lacking, spatial modeling and interpolation of directly modeled soil 

water retention parameters at different depths across a catchment would shed light on 

how directly modeled retention parameters are spatially distributed at the near-surface 

and deep subsurface.  Interpolating and mapping retention parameters at different depths 

across Shale Hills is possible after spatial modeling through universal or regression 

kriging.         

 Examining soil-hydrologic interactions at multiple spatial scales is a staple in 

hydropedologic research (Lin, 2010).  Hydropedology emphasizes continuous monitoring 

as a means to better understand landscape-soil-hydrologic relationships.  The Shale Hills 

Critical Zone observatory has been established partly as a soil-hydrologic watershed-

scale laboratory, where matric potential and volumetric moisture content have been 

collected weekly or bi-weekly since 2005 at sites that span the watershed.  This has 

facilitated the direct modeling of soil hydraulic parameters across the catchment and the 

subsequent analysis.  
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 This study attempted to address the following questions using an extensive 

monitoring dataset: 1)  Are soil water retention parameters at different depths and sites 

across the Shale Hills controlled by soil types, soil depths, soil properties, terrain 

attributes, and landform units?  2)  How are soil water retention parameters spatially 

distributed in the Shale Hills at near-surface and subsurface?   

 

 

1.3  Literature Review of the Delineation of Hydropedological Functional 

Units  

 Precision and digital soil mapping have become increasingly important in 

pedologic and hydrologic studies (McBratney et al, 2003; Moller et al, 2008; Behrens et 

al, 2009; Hodza, 2010;  Zhu et al, 2010; Yang et al, 2011).  As soil series map units 

provide information about multiple attributes such as soil depth, textural class, slope 

value, parent material, and many others, more precise and functional soils information are 

needed for improving the accuracy of hydrologic models that utilize soil property inputs 

for storage and discharge calculations (Duffy, 1996), broadening the breadth and 

capability of ecologic models utilizing soil hydrologic inputs to help explain vegetation 

dynamics (Seyfried et al, 2005), and optimizing digital soil map creation for precision 

agricultural studies and applications (Zhu et al, 2010b).  

 As hydrologic models may use soil property information, such as saturated soil 

moisture storage, as parameters (Duffy, 1996); delineating soil map units that embody 

quantitative soil-hydrologic information for a catchment may benefit catchment-scale 

hydrological models.  Ecological variables, such as vegetation coverage, correlate with 

soil depth and hydrologic data (Thompson et al, 2011), suggesting that delineating areas 
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of similar soil-hydrologic characteristics would also benefit ecohydrological models.  

Land management and planning decisions concerning agricultural fertilizer applications, 

stormwater drainage allocation, building development layout and landscaping design may 

also be better informed with a concise representation of soil functional characteristics 

represented by enhanced map units. 

 Raster maps of topographic variables have been used for delineating map units 

representing areas of similar terrain characteristics (Park and vande Giesen, 2004) and 

areas with similar mass balance index (Moller et al, 2008).  To date, raster maps of 

directly modeled soil retention characteristics have not been utilized with terrain maps to 

produce similar topographic-soil-hydrologic units.  Furthermore, validation of map units’ 

performance in protecting soil moisture content with a temporally extensive dataset of 

manually collected soil moisture data has not been commonly reported (Park and vande 

Giesen, 2004).   

 The basic building blocks of HFUs consist of topographic indices and soil 

properties that are well correlated with moisture.  Catchment- or landscape-scale 

characterization of soil water retention or soil hydraulic conductivity parameters is also 

necessary to attribute soil-hydrologic functional information to delineated landscape 

units.  The integration of these diverse datasets into similar units is a process that may 

consist of geo-statistics (Zhu et al, 2010b), multi-variate statistics with maximum 

likelihood optimization (Moller et al, 2008), or combination of these techniques.  As 

there are advantages to both of these GIS-related methodologies, this study seeks a 

combined approach of geo-statistics with multi-variate statistics using maximum 

likelihood optimization algorithms.    
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Chapter 2: Materials and Methods 

 

2.1  The Shale Hills Catchment 
 
 The Shale Hills field research laboratory spans an entire 7.9 hectare catchment in 

the Pennsylvania Ridge and Valley physiographic region. The parent material throughout 

the watershed is continuously Rose Hill Shale.  Shale Hills lies within a udic moisture 

regime, and the catchment has been covered by a natural forest ecosystem common to the 

Pennsylvania Ridge and Valley physiographic region.  The outlet in Shale Hills is located 

in the western end of catchment with elevation approximately 256 m above sea level.  

The highest point in the catchment is in the north-eastern corner with elevation at 310 m 

a.s.l.  Deciduous trees are prevalent throughout most of the landscape, apart from the 

low-elevation area in the west of the catchment, where mainly coniferous tree species are 

concentrated.    

 Steeply contrasting topography, persistent year-round precipitation patterns, 

annual snowmelts, seasonal temperature variation and the constant activity of forest-

dwelling biota throughout the catchment have contributed to the weathering and 

formation of five soil series from the 200 m thick shale bedrock  (Lin et al, 2006).  

Previous research has found that topography is a major control on soil-hydrological 

processes at Shale Hills (Lin et al, 2006).  Research conducted in Lin et al, 2006 derived 

landform unit classifications and relative wetness conditions for soil moisture sampling 

sites in Shale Hills.  Following multi-variate analysis with soil properties and terrain 

variables, four distinct landform units were delineated: valley, concave hillslopes, planar 

and convex hillslopes, and summit.   
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Figure 2.1 depicts general soil profile depths and horizon delineations for each 

soil series.  An USDA-NRCS Order 2 soil survey conducted in Shale Hills concluded that 
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Figure 2.1: Schematic showing the thickness of the solum and soil horizons as observed in soil pits dug 

for each of the five soil series in the Shale Hills and the precision soil map for Shale Hills.  The 

Rushtown, Blairton, and Ernest soil profiles are deeper than the scale indicated as the soil pits could not 

go further down due to safety issue and the limitation of the backhoe used.  Colored points indicate the 

exact depths that tensiometers were installed: red = 10 cm; blue = 20 cm; green = 40 cm; yellow = 80 

cm; and cyan = 100 cm depth.  Horizons are color coded indicating approximate real soil color. 
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available soil series designations do not completely fit all soils in the catchment; rather, 

the soil series designations in Shale Hills are the closest approximations of currently 

available official soil series (Lin et al, 2006).   

 Ernest (Fine-loamy, mixed, superactive, mesic Aquic Fragiudults) and Blairton 

(Fine-loamy, mixed, active, mesic Aquic Hapludults) soils lie on the valley floor.  They 

are the deepest soil series in the catchment with profiles that extend deeper than the 

bottoms of soil pits dug during the survey.  Fragic properties are associated with Ernest 

soil’s Btg horizon, which is a major structural differentiation from Blairton soils.  

Prismatic structure, high clay content, gleying and strong presence of redoximorphic 

features in the Btg horizon indicate that Ernest soil possesses a layer retarding vertical 

moisture percolation.  A horizon with similar soil properties was not identified in the soil 

pit of the slightly higher-elevated Blairton soil. 

 Rushtown (Loamy-skeletal over fragmental, mixed, active, mesic Typic 

Dystrudepts) is found in the centers of seven swales that interrupt the surface of hillslopes 

around the catchment.  It is moderately deep compared to the two other non-valley soils, 

but its B horizons are weakly developed.  Berks (Loamy-skeletal, mixed, active, mesic 

Typic Dystrudepts) appear on the steep sides of swales in the catchment and appear as a 

transition between the convex and planar hillslopes to the concave swales.  Weikert 

(Loamy-skeletal, mixed, active, mesic Lithic Dystrudepts) soil occupies approximately 

70% of the area in Shale Hills.  It dominates convex and planar hillslope and summit 

landform units. 
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2.2 Soil Moisture Retention Data Collection 

 Volumetric Soil Moisture Content (θ) has been collected in Shale Hills weekly or 

bi-weekly typically from mid-April to late November since 2004.  A TRIME-FM 

(IMKO) Time Domain Reflectometry (TDR) device was used to collect soil moisture at 

depth intervals 0 to 0.20, 0.10 to 0.30, 0.30 to 0.50, 0.50 to 0.70, 0.70 to 0.90, and 0.90 to 

1.1 m by inserting the probe into a PVC access tube buried at each site location across the 

catchment.  These intervals correspond to depth points at 10, 20, 40, 60, 80, and 100 cm 

from the surface (further details in Lin et al, 2006).  As the depths are recorded in cm, the 

unit for volumetric moisture content data for this research in Shale Hills is cm
3
/cm

3
.   

 Soil matric potential (ψm) has been collected simultaneously with soil moisture 

content at 61 TDR sites consistently since 2005.  Nests of tensiometers were installed 

about 0.15 m away from 61 TDR access tubes at 10, 20, 40, 80, and 100 cm depth points.  

As soil thickness varies among these sites from 21.4 to 196.7 cm, the number of 

tensiometers available for each site is dependent upon soil depth.  The tensiometers are 

filled with de-aerated water to prevent erroneously high pressure measurements resulting 

from air bubbles.  A tensimeter device (SMS, Arizona) was used to collect total potential 

(mbars) from the tensiometers during each data collection.  The tensimeter device can 

record total potential values to a lower limit of approximately -850 mBars. 

 As water flows in the direction towards lower potential, water will move inside or 

outside a porous ceramic cup located at the bottom of the tensiometer until the difference 

of potential between water inside the tensiometer and water located in soil directly 

outside the porous cup is zero. Equilibrium is reached when the difference in potential is 
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zero (Young and Sisson, 2002).  Matric potential is obtained from total potential 

measurements from the tensiometers in the field using the following equation: 

gtm             (1)    

where ψm is matric potential (mBars), ψt is total potential (mBars) reading from a 

tensiometer, and ψg is gravitational potential (cm) that is the distance between a reference 

elevation and the location of the tensiomter ceramic cup midpoint.    If the reference 

elevation is set at the depth of the tensiometer cup, then the burden of the water column 

inside the tensiometer above the porous cup must be considered when calculating matric 

potential from manually collected tensiometer data.  A centimeter of water in the 

tensiometer provides 1 mbar of burden on the ceramic cup; therefore the length of the 

water column inside of the tensiometer was recorded and added to field measurements to 

obtain matric potential values for a tensiometer during each collection date (Young and 

Sisson, 2002).    

 

2.3  Soil Moisture Retention Modeling  

 The Gardner (Eq. 2), Campbell (Eq. 3) and van Genuchten (Eq. 5) moisture 

retention models were used to fit retention curves to volumetric moisture content vs. 

matric potential data from a total of 232 location-depth combinations across the Shale 

Hills. The Gardner (1970) model is expressed as 

 

 
ba           (2) 

 

where ψ is matric potential, θ is volumetric moisture content and a and b are curve-fitting 

parameters .   
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The Campbell (1974) model is: 

 
b

s

e

 )(



        (3) 

 

Where θs is volumetric moisture content at saturation, ψe is air-entry tension, and b is a 

curve-fitting parameter.  The advantage to this model is the estimation of ψe, which 

theoretically represents the matric potential value where moisture in soil macropores have 

drained and air may infiltrate into the soil (Kosugi et al, 2002).  

 Equations (2) and (3) were curve-fit by first log-transforming both sides of the 

equation to obtain linearity and finding the slope (S) and intercept (I) of the resultant 

linear curve.  The -b variable of equation (2) was determined by S and the a variable in 

equation (2) was determined by )(IExp .  The -b variable of equation (3) is S and ψe is 

)(IExp .  θs for equation (3) was estimated from a maximum likelihood algorithm and is 

the same θs value used for the van Genuchten equation.  The slope (-b) for both Gardner 

and Campbell log-transformed linear curves were exactly the same, because equations (2) 

and (3) may be directly related via equation (4): 

 
b

se a   *        (4) 

 

 The van Genuchten soil water retention model is expressed as (van Genuchten, 

1984): 

 

 mn

rs
r
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
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


       (5) 

 

 
n

m
1

1         (6) 
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where θr is residual moisture content, while α, n, and m are curve-fitting parameters.  

Directly relating m to n by (6) eliminates one curve-fitting parameter and theoretically 

allows the physical meanings attributed to α and n to be better defined (Kosugi et al, 

2002).  m was directly related to n using equation (6) for this study.     

 Residual moisture content has been defined as the moisture content at -15 Bar 

matric potential (van Genuchten, 1980), implying that the permanent wilting point of 

plants has been reached at this value.  Since field data collection methods for this 

research allow lower limit of matric potential to be about -850 mBar, θr is treated as a 

curve-fitting parameter, as it has been in past research (Hodnett and Tomasella, 2002; 

Kosugi et al, 2002; van Genuchten, 1980).       

 The value of α (cm
-1

) is approximately the inverse value of matric potential at the 

inflection point in the van Genucthen retention curve (Fredlund and Xing, 1994).  The 

location of the inflection point on the van Genuchten curve indicates the relative 

influence of macropores on soil moisture flow.  Macropore flow has been related to 

texture properties (Vereecken et al, 2010), but it has been shown that soil structure in 

field settings also contribute to macropore dominated flow (Hodnett and Tomasella, 

2002; Lin et al, 1998; Zhou et al, 2008).  Cracking between clay aggregates may induce 

macropore flow, for instance (Zhou et al, 2008).  

 The values of n influence the overall shape of a retention curve.  Large n values 

create a steeper slope of the curve at its inflection point (Fredlund and Xing, 1994), 

possibly indicating a more effective release of moisture (Hodnett and Tomasella, 2002).  
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Low n values produce a gradual slope of the retention curve, and indicate that the release 

of moisture is more deliberate as ψm becomes more negative.    

 Fitting van Genuchten curves without parameter optimization has been 

accomplished in past research with knowledge of a soil’s saturated hydraulic conductivity 

and water infiltration rate over time (Shao and Horten, 1998).  Since saturated hydraulic 

conductivity and water infiltration data was not available for any depth locations, a 

maximum likelihood optimization procedure was applied with the van Genuchten model 

to estimate θs, θr, n, and α parameters.  

 

2.4  Maximum Likelihood Estimation of the van Genuchten Parameters 

and Moisture Retention Model Diagnostics  

 

 The Maximum Likelihood Estimation (MLE) optimization of the van Genuchten 

parameters was performed using an algorithm coded in the R statistical computing 

software.  A common method of optimizing van Genuchten parameters to fit θ(ψm) data 

is the Levenberg-Marquardt least-squares error algorithm (Marquardt, 1963). This 

algorithm has been implemented in software ‘RETC’ for optimization of van Genuchten 

model-fitting (van Genucthen, 1991).  MLE optimization has considerable advantages 

over simple least squares estimation methods on manually collected θ and ψm field data 

(Hollenbeck and Jensen, 1998). 

 The MLE optimization is advantageous first because uncertainty or variance in 

the data is used during the optimization process to define parameter space; the data 

distribution of observed data informs parameter estimation.  Another advantage of MLE 

is that parameters, given sufficiently wide bounds, will converge upon a global minimum 
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in an objective function.  Successful completion of an MLE procedure also produces an 

invertible Hessian matrix, which is computed from the sensitivity of the model to the 

parameters.  The proper inversion of the Hessian matrix is a diagnostic showing the 

estimated parameters have converged upon a finite space and are reliable estimates. 

 Convergence was achieved and the Hessian matrices were properly inverted 

during MLE optimization for van Genuchten model parameters at all 232 tesniometer 

depth locations in Shale Hills.  All sites were modeled using the same starting conditions 

and parameter bounds.  The L-BFGS method (Byrd et al, 1995) was used, because it 

allows box constraints.  The α and n parameters had constraints imposed for effective 

global convergence, which were chosen to be wide, but not too wide to make 

convergence impossible.  θs was constrained to be no less than the highest collected soil 

moisture value, and θr was constrained to be lower than the lowest collected soil moisture 

value.   

  

2.5  Statistical Analysis of Moisture Retention Parameters  

 The Gardner, Campbell and van Genuchten parameters from all 232 depth 

locations were analyzed in a 3-way ANOVA test.  The ANOVA was performed with a 

generalized linear model using soil series, landform units and depth and their interactions 

as categorical predictors and retention parameter as a response in order to discover 

factors that place a significant control on parameter variance.  θr was not analyzed, as its 

physical meaning was nullified by the range of matric potential values being no greater 

than approximately (–) 850 mbars.  Natural log-transformations were used on the a, b and 
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α values, and a log10- transformation was performed on n values to accommodate 

normality for the generalized linear model and subsequent ANOVA test.   

 The van Genuchten and Campbell ψe parameters at all depth locations were 

summarized according to soil series and landform units for separate depth intervals at 10, 

20, 40, 80 and 100 cm.  A Tukey HSD test was performed to find significant differences 

in means of each parameter between different soil series and landform units for each 

depth interval at p < 0.05.  

 Analyzing the correlation between texture, topographic and soil moisture 

retention variables is necessary for determining which topographic and soil properties 

place a significant control on soil water retention in Shale Hills.  A correlation matrix was 

derived by performing a Spearman correlation analysis between hydraulic parameters, 

topographic variables and soil texture variables at all depth locations.  The number of 

observations used for texture correlation differs from topography and moisture retention 

parameters, as texture information is incomplete at some depth locations.  

  

   

 

2.6 Geostatistical Analysis of Moisture Retention Parameters  

  To assess the general spatial structure of hydraulic retention parameters across 

the catchment at the near-surface and deep solum, semi-variograms of hydraulic retention 

parameters were modeled for all depths.  As there are a maximum of 61 site locations 

across the catchment for retention parameters and major topographic controls on the 
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retention parameters in Shale Hills, significant topographic covariates were used in 

constructing the spatial models (Zhu and Lin, 2009).    

 To estimate spatial model parameters, a maximum likelihood algorithm was used 

(Ribeiro and Diggle, 2001).  Maximum likelihood is advantageous over weighted least 

squares in that it takes the uncertainty of observed data into account during the 

optimization procedure.  Parameters optimized for spatial models include the partial sill, 

range, nugget, anisotropy ratio, anisotropy angle, and lambda.  The nugget is a variable 

indicating the intercept of the semi-variance curve to the y-axis.  The range parameter 

indicates the x-axis coordinate of the inflection point of the semi-variogram curve.  A 

high range indicates a large variance of a parameter across space.  The partial sill is the 

difference between the maximum semi-variance value on the curve and the nugget 

(Ribeiro and Diggle, 2001).  For asymptotic theoretical semi-variogram models, such as 

the Matern covariance function, the partial sill is difference between the 95
th

 percentile 

semi-variance value on the curve and the nugget.  Lambda is a transformation parameter 

used on observation values to maintain normality, thus satisfying an important 

assumption of isotropy.      

 The basic set-up of the Gaussian random field spatial model used for spatial 

modeling of moisture retention parameters is (Ribeiro and Diggle, 2001): 

 

eyxSyxmuyxY  ),(),(),(      (7)           

 

where x,y are Euclidean coordinates, Y is the observed variable, mu(x) is the mean 

component or trend of the model, S(x) is a stationary Gaussian process defined by a 
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spatial covariance model with parameters described above (sill, range, nugget, …) and e 

is the residual term.  If there were no significant topographic covariates to use as an 

external trend in a spatial model for a moisture retention parameter, Bayesian 

optimization with a constant trend was performed (Ribeiro and Diggle, 2001).  

 The Matern covariance function was used as S(x) in equation (7).  This function is 

a modified version of the exponential covariance function, and has been utilized to 

predict soil properties across landscapes (Minasny and McBratney, 2007). Cross-

validation diagnostics were performed on each spatial model to test for independence, 

normality of predictions, and auto-correlation.   Independence and normality of 

predictions were maintained for all retention parameter spatial models.  Overt auto-

correlation stemming from topographic covariates was not detected in any model, since 

there were no patterns present in model residuals.   

 After calculating optimized spatial models for retention parameters with 

maximum likelihood, a Bayesian spatial kriging method was utilized to interpolate 

parameter values across the catchment.  This method uses the optimized spatial model 

parameters as prior information, while also iteratively testing a range of other spatial 

parameter values located within a probability distribution based around the prior 

information.  The technique calculates samples with each parameter set and compares 

them to the probability of observed data values (Diggle and Ribeiro, 2002).   

 The parameter set with the highest frequency of predicted samples within the 

probability distribution of observed data are taken as the spatial parameters for kriging.  

The Matern covariance function with Bayesian optimized spatial parameters is used as 

S(x) along with significant topographic covariates or site coordinates as mu(x) in the 
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Gaussian random field model (7) to predict values across the catchment All spatial 

modeling of moisture retention parameters was performed with the geoR package in R 

(Ribeiro and Diggle, 2001).   

 

 

 

2.7  Topographic Wetness Index and Kriging of Total Moisture Storage in  

Profile 

 
 A Topographic Wetness Index (TWI) was calculated for Shale Hills using 1 meter 

resolution LiDAR derived elevation data.  A D-inf algorithm (Tarboton, 1997) was used 

to delineate the upslope contributing area component of TWI (Böhner et al, 2006): 

 

 
)tan(

)(
ln


sA

TWI         (8) 

 

where As is “catchment upslope contributing area” and β is the slope value at a particular 

grid cell.  Figure 2.2 displays a Topographic Wetness Index (TWI) map for Shale Hills 

with the 61 site locations used in this study displayed, symbolized by the soil series 

within which each site is located. 
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  Time-series soil moisture profile storage maps are also useful for identifying 

profile-scale soil moisture patterns over time.  Profile soil moisture storage is calculated 

by the following equation (Zhu et al, 2010b):   


n

i

i dS *         (9) 

where S is profile soil moisture storage for a particular site (m), n is the number of depth 

points available at a site, θi is the volumetric moisture content at the i
th 

depth and di is the 

representative length of the i
th

 depth interval.  The depth interval length (d) was 0.15 m 

Figure 2.2: Topographic Wetness Index map for the Shale Hills, with TDR-tensiometer site locations colored according 

to designated soil series.  Numbers indicate site locations in a toposequence within the cathcment that correspond to 

sites featured in Figure 3.2.  The dotted box indicates the approximate boundary of the focused toposequence reported.   
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for 10 and 20 cm depths, and 0.20 m for 40, 60, 80 and 100 cm depths.  S represents 

profile soil moisture storage within a 1.1 m soil profile for the deepest sites.  Regression 

kriging with the package Gstat was used to interpolate total moisture storage for each 

date (Pabesma, 2004).   

 

2.8  GIS Processing of Topographic Raster Maps and Depth to Bedrock 

Map  

 

 Topographic variables are cornerstones in the foundation of Hydropedological 

Functional Units and topographic raster datasets are necessary predictors during 

regression kriging of soil moisture at all depths and total moisture storage across Shale 

Hills.  Topographic variables are correlated with soil moisture for all dates in the Shale 

Hills manual database (Takagi, 2009).  A LiDAR flyover in February 2011 gathered 

elevation data to generate a high-resolution 0.5-meter DEM raster dataset for Shale Hills.  

The LiDAR data was preprocessed at UC Merced before processing occurred for this 

study.  A Guassian filter was applied with a 9 x 9 smoothing window to eliminate 

residual noise in the DEM.  From the filtered LiDAR DEM, three topographic raster 

maps were created through GIS processing and were used to predict soil moisture and the 

delineation of HFUs during this study.  
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 Slope value is a ratio of a raster cell’s vertical distance “rise” over horizontal 

distance “run” based upon elevation data.  Slope value displays the maximum change of 

elevation value for a cell based upon elevation values of neighboring cells.  Higher slope 

values indicate a greater elevation change for a cell relative to a 3 x 3 cell window.  As 

slope value is a general topographic indicator of the rate of soil moisture flux, it was 

found to be correlated with profile soil moisture storage distribution across Shale Hills in 

the vast majority of soil moisture collection dates for time-series profile soil moisture 

storage regression kriging.  Previous research has also established slope as a major 

control on soil moisture patterns in Shale Hills (Lin et al, 2006; Takagi, 2009).  

Figure 2.3: 0.5 meter resolution DEM for the Shale Hills generated from LiDAR flyover in February 

2011.  LiDAR data was preprocessed in UC Merced before subsequent processing in this study 
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          Surface Curvature is another topographic variable calculated from the LiDAR 

DEM raster data.  Surface Curvature (Cs) is calculated from the following expression 

(Park and vande Giesen, 2004):     

 





n

i

innis ndzzC
1

/)/)((        (10) 

 

where zi is the elevation of the raster cell i,  zn is the average elevation of the surrounding 

area within a window of a given size, d is the horizontal distance between two cells, and 

n is the total number of surrounding cells. 

 A third topographic variable calculated from the LiDAR DEM is Upslope 

contributing area.  Upslope Contributing Area (As) is calculated by (Park and vande 

Giesen, 2004):   





n

i

iis AbA
1

)/1(          (11) 

 

where Ai is the area of the grid cell i, n is the number of flow routes draining into Ai, ρi is 

a weight related to runoff mechanisms and b is the contour width as function of the raster 

resolution.  A D-inf flow algorithm was used in this calculation, which bases the angle of 

each flow route into each cell upon the steepest downwards slope on 8 triangular facets 

centered within neighboring cells rather than 45
o
 from the center of higher elevated 

neighboring cells (Tarboton, 1997).  Applying a log-transformation to As map grids is 

generally useful, as the distribution of As values is heavily skewed in topographically 



 27 

contrasting landscapes and log(As) has been shown to be a good predictor of soil 

moisture values across landscapes (Park and vande Giesen, 2004).  

 Depth to bedrock is a soil property variable placing a significant control on soil 

moisture patterns and soil water retention characteristics at Shale Hills (Lin et al, 2006).  

233 depth to bedrock data points were gathered during an auguring campaign.  These 

data points were used to derive a depth to bedrock map by performing universal kriging 

with the 233 augur measurements.  However, further analysis with depth to bedrock data 

points collected during shallow well installations and GPR data has yielded a refined 

depth to bedrock map for Shale Hills. 
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Figure 2.4:  Maps of slope, log(upslope contributing area), surface curvature and the initial depth to bedrock for the Shale Hills.  TDR site locations are plotted with point size on 

slope value, upslope contributing area and surface curvature indicating the magnitude of the map raster value at a site.  Depth to bedrock shows the 223 augur measurement 

locations plotted with point size showing relative magnitude of soil depth 
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2.9 Refinement of Catchment-scale Depth to Bedrock Map 

 A fundamental dataset used in deriving HFUs and predicting catchment-wide soil 

moisture distribution is depth to bedrock.  Catchment-wide depth to bedrock data is 

notoriously hard to obtain and map for catchments and landscapes the size of Shale Hills 

and greater.  Advances in geophysical technology have shown great potential in being 

able to obtain depth to bedrock data non-invasively in the field.   

 Ground Penetrating Radar (GPR) has emerged as a geophysical tool used to study 

the subsurface.  It is dependable enough to perform evaluations on the accuracy of 

seismic geophysical technology (Baker et al, 2001, Herbert, 2005).  GPR studies have 

been carried out in Shale Hills across several transects in the catchment.  GPR wave 

amplitude measurements are processed to acquire depth measurements to an interface 

that significantly alters the GPR wave’s amplitude.  An interface where significant 

changes in a wave’s amplitude occur is the border between materials of drastically 

different densities (Daniels, 2004).  A subsurface interface such as this may be 

considered the soil-bedrock interface if a noticeable trend exists in the data taken along 

the transect line.  

 The typical frequency of the radar used in Shale Hills is 400 mHz.  This 

frequency is low enough to penetrate at a depth sufficient for recording the depth to 

bedrock in the catchment in several transects.  A GPR instrument with 200 mHz was also 

available since soil profile depths in the catchment were discovered to be too deep for the 

400mHz frequency.  The lower frequency is useful for recording information about 

greater depths, but the lower resolution potentially makes interpolation about the soil-
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bedrock interface more difficult, especially if the data are collected in sub-optimum 

environmental conditions (Daniels, 2004).    

 Processed GPR data surveys taken in Shale Hills with a GPR unit using a 

frequency of 200 mHz showed clear trends among wave amplitude changes along several 

transects, which in turn indicated the corresponding soil-bedrock interfaces.  GPR data 

along two transects at the east end of the catchment were available for processing, and a 

total of 65 depth-to-bedrock data points at 1 meter spacing were calculated from these 

data.  The depth to bedrock measurements from the GPR survey data were included with 

previously collected depth measurements from auguring and shallow well installments in 

Shale Hills to generate a refined depth to bedrock map for Shale Hills by using regression 

kriging with 385 total depth measurements.  Surface curvature and TWI were regressors 

used in predicting spatial autocorrelation of depth to bedrock, and the cross-validation of 

the spatial model exhibited an R
2
 of 0.87.  

Figure 2.5: Refined depth to bedrock map with all the available data in the Shale Hills (385 total).  Included is the semi-

variogram depicting spatial variance of depth to bedrock data fitted with a Spherical covariance function.    
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 Catchment-scale depth to bedrock maps may be potentially generated for other 

catchments without the need for extensive auguring campaigns by using GPR data 

acquired from spatially wide-ranging surveys, while assuring sound measurements with 

proper validation techniques.  Such catchment-wide GPR surveys should be conducted 

during periods of the year with the best environmental conditions for GPR data collection 

at a given catchment (NRCS).  Auguring may be required to validate and calibrate GPR 

depth measurements.  Depth to bedrock data from other GPR surveys in Shale Hills may 

be utilized to further refine the depth to bedrock map, if needed.   

 

2.10  Delineated Landform Units in the Shale Hills Using Park and vande 

Giesen (2004) Method 

 

 Park and vande Giesen (2004) developed a method for quantitative delineation of 

landform units in a landscape.  A procedure for delineating landform units (LFUs) using 

a raster DEM dataset was developed and used in the Tarrawarra Catchment, Australia 

(Park and van de Giesen, 2004).  The method first requires a scatterplot of log(Upslope 

Contributing Area) [As] and Surface Curvature [Cs] raster data for an area to be plotted 

against one another.  From this scatterplot, the user may use both reasoning and 

familiarity with a study area to manually establish threshold values in the Cs and log(As) 

data to delineate landforms such as “shoulder”, “interlfluve”, “backslope”, “toeslope”, 

etc., from the scatterplot.  The amount of landform units that may be delineated in an area 

depends upon the nature of the scatterplot. 

 Figure 2.5 shows the scatterplot of Cs versus log(As) raster values for Shale Hills.  

Five landform delineations were found reasonable for this data:  
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i) Summit  =    Cs > - 0.05 & log(As) < 0.94  

ii) Convex Hillslope  =  Cs > 0.01  &  log(As) > 0.94  &  log(As) < 3.25 

iii) Planar Hillslope  =  Cs > -0.01  &  Cs < 0.01  &  log(As) > 0.94  &  log(As) < 3.25 

iv) Concave Hillslope  =  Cs < -0.01  &  log(As) > 0.94  &  log(As) < 3.25 

v) Valley  =    Cs < 0.01  &  log(As) > 3.25 

 These delineation thresholds are demarcated on Figure 2.6 with lines color-coded 

for each landform.  Colors corresponding to each landform are indicated in parentheses 

next to each landform unit name above.   

          

Figure 2.6:  Scatterplot of log(As) and Cs raster data for the Shale Hills.  Colored lines demarcate 

thresholds set for the delineation of 5 landform units: spell out these landform unit names here. See 

Fig. 2.7 for actual spatial distribution of these 5 units for the Shale Hills. 
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 After raster cells have been assigned a landform unit designation, a raster map of 

delineated landform units may be plotted.  The raster dataset itself may be used as a 

factor predictor variable in models.  Figure 2.7 shows LFUs for Shale Hills delineated 

with Park and vande Giesen’s 2004 method.  The procedure caused 8 swales to be 

derived from the Cs versus log(As) data.  The summit does not wrap completely around 

the catchment, as raster cells on edges of the northwestern slope and south-central slope 

hold log(As) values greater than the 0.94 log(m
2
) threshold.  This is possible, because the 

D-inf algorithm allocates less upslope contributing area to cell neighboring steep slope 

gradients.  The Slope Value map in Figure 2.4 reveals a more gradual change in Slope 

Values downslope from catchment edges without a delineated Summit LFU. 

Figure 2.7:  Map of landform units (LFUs) in the Shale Hills delineated with the method of 

Park and vande Giesen (2004) 
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2.11 Analysis of Topographic and Hydrologic Datasets for Informing 

Hydropedological Functional Unit Concept and Generation 

  

Proper delineation of map units representing zones of similar soil-hydrologic 

function must be constituted by a set of coherent procedural steps in order to be both 

reproducible for other landscapes and catchments and successful in yielding physically 

meaningful geographic entities.  HFUs are a convergence of pedologic, hydrologic and 

topographic information.  They represent unique consociations assembled from variables 

that control soil-hydrologic processes.  Although approaches using process-based 

topographic properties (Park and vande Giesen, 2004) and the mass-balance index 

(Moller et al, 2008) have been developed to characterize similar soil-landform units, 

aggregating soil hydrologic function parameters, topographic data and soil properties, 

such as depth to bedrock, into similar functional units so far has not been reported.   

 Both scaling and synthesizing diverse datasets meaningfully are two obstacles 

confronting the delineation of HFUs.  Topographic properties and soil moisture patterns 

have been found to be well related at Shale Hills (Lin et al, 2006 and Lin, 2006), yet the 

integration of many soil moisture data maps across an extensive time-period into a single 

index that may be directly related to or integrated with topographic maps has not been 

accomplished.  However, soil-water retention parameters obtained through direct 

modeling have been calculated at the point-depth scale and aggregated to the site-profile 

scale.  Profile-scale soil water retention parameters were mapped using geostatistics 

(details in Section 2.6), consequently allowing the representation of soil water retention 

characteristics at the catchment- or terrain-scale (Figure 2.8).   
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 Preceding the aggregation of topographic attributes, soil hydrologic parameters 

and depth to bedrock, a thorough analysis of available raster datasets for Shale Hills was 

performed to delineate potential units within each individual dataset.  Total profile 

moisture storage was calculated and interpolated across the catchment for dates of data 

collection from May 2008 to November 2010.  These maps were analyzed in a time-

series sequence to discern similar spatial patterns of profile soil moisture storage over 

time, and to distinguish general soil wetness conditions that occur each year in the 

catchment.  Three general soil wetness conditions were found to recur each year: wet 

(December to May), intermediate (May to end of June and end of September to 

November) and dry (July to end of September). 

 Table 2.1 exhibits the results of possible unit delineations for raster datasets in 

Shale Hills.  Units were delineated differently for each raster dataset; however these 

delineations each followed a general scientific or quantitative reasoning.  Rasters without 

a clear connection to moisture patterns or that frustrated an understandable methodology 

Figure 2.8:  Map of aggregated θs (solum storage at saturation).  Regression kriging 

was used to interpolate θs with depth to bedrock being the significant regressor. 
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for delineating units were not analyzed.  Terrain rasters that had a published method in 

discerning separate units included slope, surface curvature and upslope contributing area.  

Separate ranges of depth to bedrock values have a clear connection to the delineation of 

official soil series in Shale Hills.  Solum θs storage and profile soil moisture storage maps 

were analyzed in a straight-forward statistical method, as these rasters have a direct 

connection to depth to bedrock and terrain via regression kriging.  Table 2.1 shows that a 

maximum of five clusters are possible by observing topographic, depth to bedrock, and θs 

storage maps. 

 Surface curvature and log(upslope contributing area) both exhibited three units 

defined by threshold values instituted from the Park and vande Giesen-directed analysis 

of the scatterplot in Figure 2.6.  This analysis carves surface curvature into concave, 

planar and convex terrain surface units.  The log(upslope area) map shows small summit 

and valley units which are distinctly separated from the hillslope.  The convex and planar 

hillslope and concave hillslope cells have moderate upslope areal influence compared to 

the little to no upslope influence at the summit and the abruptly high upslope influence 

found on the valley floor.   

 Slope was separated according to USDA-NRCS soil slope class designations.  

The catchment is relatively steep in general, as very little of the catchment fits within 

slope classes A and B.  Slope values near the extent of class C and lower show a distinct 

valley unit which envelopes the extent of Ernest and Blairton soil series.  Slope class C is 

also evident around the summit of the catchment.  The hillslope shows a division between 

a steep slope class F and less steep class D.          
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 As with slope, curvature and log(upslope contributing area), the three units amidst 

the depth to bedrock raster were delineated according to empirical knowledge.  The high 

resolution soil survey for the Shale Hills separated the Berks soil series from the 

Rushtown series by a depth to bedrock value of 100 cm, and depth to bedrock 

measurements in the Rushtown, Ernest and Blairton soil series have a minimum limit of 

 

Table 2.1:  Identified units representing the general patterns of important landscape variables and selected soil moisture storage maps 

representing three different wetness conditions (wet, intermediate, dry, and saturation).   
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100 cm.  The Berks and Weikert are separated according to depth to bedrock by a value 

of 50 cm.  These specific soil attributes prompt the delineation of three depth units of 

relatively shallow, intermediate and deep soil in the Shale Hills using break values of 50 

and 100 cm.       

 Curvature and depth to bedrock show three distinct units that have arisen in part 

from dynamic terrain-hydrologic processes.  The soil residing on convex hillslope areas 

are actively weathered by fluid movement along a topographic gradient.  This fluid 

movement in turn shifts materials into concave hillsope and valley positions.  The 

continuous weathering allows convex hillslope soil to be deeper than much of the planar 

hillslope areas, but the flux of material from fluid movement inevitably feeds into the 

concave hillslope and valley locations, making these areas the deepest within the 

catchment.  The depth to bedrock map neatly shows these three depth distinctions.   

  The solum-scale θs raster is unique as it was generated from θs values directly 

modeled from data collected in situ and significant topographic variables during 

regression kriging.  It carries information regarding maximum profile soil water retention 

capacity, which is controlled by both topography and soil structure.  The θs storage data 

was correlated with topographic wetness index and depth to bedrock.  Additional 

information unique to these two spatial regressors is embodied within this raster, as it 

shows a uniquely wide pattern of high values in the valley close to the catchment outlet, 

which is not present in any topographic or depth to bedrock map.   

 Three units were derived from this map as it has close association to depth to 

bedrock.  The data distribution of solum  θs cell values is skewed towards zero.  The 

mean raster value served as one break point, and the θs value at the distance of the 
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standard deviation of the raster dataset (0.06) away from zero served as another break 

point in demarcating three units.  This method was used because of 1) the statistical 

straight-forwardness and 2) profile θs values between the mean and maximum values 

represent transition areas between typically low moisture holding hillslope and high 

moisture holding concave hillslope and valley soil.  A portion of the footslope area close 

to the catchment outlet fits within the high moisture capacity unit.  Site 38, which lies on 

the footslope adjacent to the catchment outlet, contains relatively high θs values within its 

solum, thereby contributing to the broadness of the wet θs unit at the catchment outlet.    

   The range of observed profile soil moisture storage values contained in maps for 

dates spanning 2008 to 2010 was 0.008 to ~ 0.50 m.  From the sequence of total moisture 

maps, a maximum five soil profile moisture storage units were expressed according to 

general patterns.  The wet conditions showed the maximum units, and the dry conditions 

showed the least amount of units.  Based upon the total moisture storage range of values, 

a custom-made color spectrum was created and set as standard for each total moisture 

storage map.  This color scheme was designed by using graduated red colors for total soil 

moisture values at ~ 0 to 0.10, orange for 0.10 to 0.20, yellow for 0.20 to 0.30, cyan for 

0.30 to 0.40 and blue for 0.40 to 0.50.  Prominent areas that exhibited a similar band of 

colors were in turn considered a general moisture unit for a date.   

 The total moisture storage map sequence consistently exhibited the same apparent 

valley unit expressed in the Slope map amidst low-elevation, < C class slope values.  

However, in a substantial number of dates during all moisture conditions, a partitioning 

in moisture storage patterns appeared within the valley unit, dividing it roughly at the 

origin of the ephemeral stream.  This division was more prevalent during dry and 
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intermediate conditions.  Figure 2.9 shows three dates from intermediate wetness 

conditions that clearly show a divide in valley moisture patterns at the elevation where 

the ephemeral stream appears above ground. 

   

   The profile soil storage maps of intermediate wetness conditions are not 

conclusive by themselves, but catchment-wide Electro-Magnetic Induction (EMI) data 

from multiple surveys also clearly distinguishes higher EMI patterns in the valley area 

Figure 2.9:  Maps of total moisture storage in solum during intermediate wetness conditions.  The black oval in the center 

of the black circle indicates the origin of the ephemeral stream.  Notice darker blue colors occur in areas lower in 

elevation than stream origin, while only light blue colors appear at elevations higher than stream origin. 
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holding the ephemeral stream compared to the higher elevated valley (Figure 2.10).  This 

indicates a difference in not only general soil moisture patterns, but also pedologic 

properties between the valley soil encompassing the ephemeral and the valley soil at a 

higher elevation than the stream.    

 

Figure 2.10:  Catchment-wide Electromagnetic Induction (EMI) surveys performed in the Shale Hills for the wet (April) and 

intermediate (October) moisture conditions.  High EMI values indicate a higher concentration of electrically conductive material, 

such as soil water or saline material, within the soil.  Higher EMI values appear over soil directly adjacent to the stream and abruptly 

decrease beyond the stream for both surveys.  Maps were created using ordinary kriging interpolation.  
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2.12 Quantitative Analysis of Raster Datasets to Delineate HFUs 

 All raster maps observed in the preliminary analysis held values at the same 

spatial scale, so the remaining obstacle lay in synthesizing raster datasets with physically 

disparate data in into a single map.  The preliminary analysis of available topographic, 

soil property and soil hydrologic data provided guidance in deciding how many units 

should be delineated, where these generally exist in the landscape, and what rasters 

should be used during the delineation procedure.  Research of catchment-scale soil water 

retention characteristics for Shale Hills utilized a Principal Component Analysis (PCA) to 

transform topographic properties, soil depth and soil retention characteristics into a 

reduced set of uncorrelated variables.  Each of the new principal components describes a 

portion of variance that exists within the dataset of the original variables.  The first PC 

holds the maximum amount of information, and each subsequent PC holds a decreased 

share of variance proffered by the manifest variables. 

 To maximize efficiency of a PCA, a group of variables should be selected that do 

not share an excessive amount of redundant information in the dataset and avoid multi-

collinearity (Mardia et al, 1979).  A PCA may expose variables that explain the 

maximum amount of information within a set of variables by observing the magnitude of 

scores the variables individually place on each PC.  The manifest variable with the 

highest score on the first PC controls much of the variance held amongst the collection of 

manifest variables.  Besides locating important drivers of variance in a dataset, a PCA is 

useful for obtaining coordinates for each point of observation relative to each PC’s axis in 

rotated space.  In the case of raster datasets, the observation points are grid cells holding 

different variable values.  The quantity of coordinates, or rotated values, associated for 
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each grid cell is equal to the number of PCs defined.  This method allows disparate 

variables to be related to each other through their relationship to uncorrelated variables.  

Prior to PCA, all input datasets were scaled with the root mean square error of their 

observations.  To judge the extent of correlation between raster datasets representing data 

at the landscape-scale, a Spearman non-parametric correlation test was performed on all 

rasters representing topographic, soil property and hydrologic data in the Shale Hills 

geospatial database.   

 The rotated subspace defined after a PCA of a group of variables is 

indistinguishable to the centroid cluster subspace delineated during K-means cluster 

analysis (Ding and He, 2004).  This allows for k- or c-means clustering of coordinates 

assigned to each grid cell in Shale Hills from a PCA, essentially serving as a means to 

quantitatively characterize similar patches of raster cells based upon different sets of 

topographic, soil and hydrologic variables.  A fuzzy c-means clustering was used for this 

purpose, as it allows for a non-discrete, proportion-based assignment of grid cells to 

similar groupings calculated through a maximum likelihood algorithm.  The fuzzy c-

means clustering algorithm is based off the following equation (Pal et al, 1996): 

 

i j ij

m

ij d*        (12) 

 

where uij is the membership of observation i in cluster j, and dij is the distance or 

dissimilarity between observation i and center j. The dissimilarities used are the sums of 

squares. m is the degree of “fuzziness”, in this case set to 2, or lowest fuzziness.  The 

algorithm ceases when it is unable to reduce the value of the objective function by  
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)*(* relrel TVT , where Trel is the relative convergence tolerance, and V is the value of the 

objective function.   

 The ouput includes ncluster membership values for each variable location.  These 

are the proportion (0 to 1) of a location’s membership for each of the clusters.  A 

location’s cluster membership is based upon the maximal membership value for a cluster.  

Since soil and topography is heterogeneous and continuous, membership of a soil to a 

topographic-depth group should also not be discrete.  Clustering involving rotated values 

from PCA at a grid cell using fuzzy logic accomplishes 1) objective grouping of sites into 

similar clusters based upon their relationship to topography, soil properties and moisture 

retention in linear orthogonal space, 2) provides non-distinct membership of sites into a 

designated cluster, and 3) avoids multi-collinearity by using rotated data values from 

PCA (Ding and He, 2004).    

  Since an outcome of a fuzzy c-means cluster analysis is that each raster cell 

contains proportional values depicting the cell’s probable association to each delineated 

cluster.  These proportional values may be used in a more in-depth neighborhood analysis 

for possible up- or down-scaling of delineated clusters into “parent” or “children” 

clusters, respectively (Moller et al, 2008).  Such an analysis was not performed for this 

study because of time constraint. 
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Figure 2.11 outlines the flow of specific processes involved in the delineation of 

HFUs.  By observing the total moisture storage sequence, it was determined that 5 HFUs 

may be meaningfully delineated from Shale Hill’s raster data.  The depth to bedrock, 

surface curvature and solum θs storage maps contained three units that represented 

similar terrain-hydrologic processes.  Through the Park and vande Giesen analysis, the 

log(As) map showed a distinct summit discharge zone at the edge of the catchment.  The 

slope map had five separate classes, but three combined slope units at a relatively low 

Figure 2.11:  Flow diagram depicting the sequence of processes (yellow trapezoids) with inputs 

and subsequent outputs (green boxes).  The final HFU product is in light blue color  
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elevation derived a valley unit more akin to the apparent valley unit found in the total 

moisture map sequence.  From observing EMI surveys and profile moisture storage 

moisture maps, it is clear that the portion of the valley encompassing the ephemeral 

stream is a distinct unit from the higher elevated valley, and that the higher elevated 

valley generally functions more similarly to concave hillslope landscape positions.      

 The depth to bedrock and solum θs storage raster datasets were chosen to be 

inputs for the PCA according to the following justifications: 

i)  Depth to bedrock offers three units depicting distinct formed from subsurface 

hydrologic and soil weathering processes.  Depth to bedrock incorporates general patterns 

from surface curvature and topographic wetness index from regression kriging, so both 

moisture flux direction and the general topographic gradient is incorporated into depth to 

bedrock.  Depth to bedrock distinguishes shallow versus intermediate depth hillslopes 

accurately.  

ii)  θs Storage grants three general units that represent varying levels of estimated 

maximum moisture retention in the soil profile across the catchment.  General patterns 

from TWI and depth to bedrock are incorporated in θs, but the valley and footslopes 

landscape positions adjacent to the catchment outlet exhibit High moisture holding 

capacity, resulting partly from alluvial processes and fluid movement towards the 

catchment outlet, which is not displayed in depth to bedrock. 

 Slope value was not included in the initial process, as its flat valley unit is not 

distinctive enough with other maps to be delineated through clustering.  Moller et al 

(2008) faced a similar issue when attempting to delineate a Floodplains unit from terrain 

data using clustering, and opted to define their Floodplain unit with a separate process. 
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Total moisture storage data was used as validation data and therefore could not be 

quantitatively utilized in delineating HFUs. The minimum or limiting number of clusters 

with the four aforementioned maps is 3, and this was the amount of clusters designated to 

the fuzzy c-means clustering algorithm following a PCA of the four maps. 

 After 3 initial hillslope HFUs were delineated, the slope was then used to define a 

valley from the Deep Soil, High Storage, Concave Hillslope cluster.  Slope is 

occasionally used during soil surveys to draw rough boundaries of soil series in the 

landscape, so applying the slope map as a quantitative refinement tool is somewhat 

consistent with field methods.  The Flat Valley unit was delineated only to the elevation 

where the ephemeral stream originates.  Following the delineation of the Valley unit 

slope, the Summit unit was defined by applying the threshold log(As) value for Summit 

obtained from the Park and vande Giesen analysis on the Hillslope cluster.      

  

2.13 Validation of HFUs  

Although physical commensurable soil-landscape-hydrologic functional units 

may be delineated using raster datasets, the capability of these units to correlate to profile 

moisture storage patterns was tested using both a linear model .  The linear model set up 

consisted of: 

 

θ Storagei ~ HFU  

 

where θ Storage is solum  soil moisture storage data collected at a TDR site for a given 

date i as a response, with the predictor being the categorical Hydropedological Functional 
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Units (HFU) as factors.  Data from soil moisture collected during 54 dates spanning 

December 2006 – November 2010 were used for validation.  Volumetric moisture 

content at different depths for dates across the same span of time was also used as 

response variables predicted by HFUs.    The linear model provided the coefficient of 

determination (R
2
) as a diagnostic to judge the performance of HFUs in predicting 

general moisture patterns for each date.  The linear model provided the standard errors 

and p-value corresponding from an ANOVA of HFUs to moisture data for each date.   

 Multiple responses to one predictor variable are  permitted in linear models, 

which prompted the use of the following model set up:            

 

θ Storagei + θ Storage i-1 + ... + θ Storagei - n ~ HFU  

 

where θ Storage is profile soil moisture storage at a date i, with the following responses 

being total moisture storage from subsequent dates of data collection.  Dates from 

January 2007 to November 2010 were used as multiple responses in this set up, however 

dates were selectively placed in the model if data for at least 60 sites across the catchment 

were non-missing.  A missing data point would disqualify an entire site’s data across all 

dates in this model set up.  31 dates were used as multiple responses in a linear model to 

measure HFU performance in predicting moisture patterns across a 3 year time period for 

at least 60 sites, which span the breadth of the catchment and represent all HFUs.  An 

ANOVA of HFUs to moisture data from all 31 dates used in the linear model was also 

performed.     
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 To assess overall moisture storage variability within soil and landform 

categorizations in the catchment, a coefficient of variation (CV) was calculated for each 

HFU, soil series and landform unit.  The CV is determined by: 

 

)(

)(

nsObservatioMean

nsObservatioStdDev
      (13) 

 

where StdDev is the standard deviation, mean is the arithmetic mean and the 

Observations are all moisture measurements taken from TDR locations within each HFU 

from available dates from December 2006 to November 2010 (102 dates total).   

 Tukey HSD multiple comparison tests were performed on the average solum 

moisture storage values collected from the same 102 dates used in the linear model across 

60 sites with HFUs, soil series and landform units as categories for three separate tests.  

The data distribution of solum moisture storage values corresponding to each soil, 

landform and HFU was normal.  This was performed to detect significant difference of 

means of average solum storage values across a 3 year time period between individual 

HFUs, soil series and landform units with a p-value < 0.05.  A Tukey HSD multiple 

comparison test was also performed on total profile texture storage (see Appendix C for 

details) collected from 58 different locations with HFUs as categories.  Significant 

differences were detected with a p-value < 0.05. 

 The linear modeling validation procedure applied to the delineated HFUs was also 

performed on soil series and LFUs delineated with Park and vande Giesen’s 2004 

method.  Diagnostics from the linear model were compared to assess which landscape 
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categorization best predicted general patterns of total storage and volumetric moisture 

content from different depths.          
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Chapter 3: Results and Discussion 

 

3.1 Landscape Factors Controlling Soil Moisture Retention   

The coefficient of determination (R
2
) was used as a model performance diagnostic 

for all soil water retention models (Figure 3.1). As equations’ (1) and (2) coefficients 

could be directly related to each other (Equation 3), their R
2
 values were the same.  The 

van Genuchten model performed better than the Gardner and Campbell models.  An extra 

parameter in the model and maximum likelihood estimation optimization offered greater 

flexibility and accuracy in predicting moisture than the power functions.  Gardner and 

Campbell models performed relatively better for locations in the hilltop and deep valley 

depth locations.   

A time-series map sequence of total profile moisture storage (Figure 3.2) shows a 

general pattern for spring, summer and autumn 2010.  Areas with low elevation and deep 

depth to bedrock retain significant amounts of moisture during the dry period.     Semi-

variogram sills were highest in the wet months of November and May, but lowest in the 

dry months of September and July, which indicates that the spatial variance of total 

moisture storage is higher in wet periods.  This may related to valley soil retaining higher 

amounts of moisture during wet periods than dry periods.      
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The dashed rectangle in Figure 2.2 delineates a catena in Shale Hills that has been 

featured in past hydropedologic research in Shale Hills (Lin and Zhou, 2008).  The 

toposequence of soils here is hilltop Weikert, hillslope Weikert, swale Berks, swale 

Rushtown and valley Ernest.  Sommer and Schlichting (1997) discussed different 

archetypes of catenas based on the overall hydrologic or im(mobilization) processes 

occuring in a catena.  This catena fits neatly in the translocation type of catena (Sommer 

and Schlichting, 1997), as there are sub-areas with leaching processes and sub-areas with 

accumulation processes that coexist within the same catena.  The catena concept may be 

visualized when qualitatively analyzing the soil hydrologic retention function at multiple 

depths from sites located in diverse combinations of soil and landforms along the 

sequence.    
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Figure 3.1: Box plots of coefficient of determination (R2 values) for the three soil moisture retention models for 232 

depth-locations at 61 sites across the catchment. R-squared values of the three retention models are grouped according 

to landform unit where depth locations reside.  The small letters at the top of each bar indicate significant differences 

and the numbers indicate sample size 
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Figure 3.2: Series of total storage moisture maps from May to November in 2010.  Moisture data was collected at 61 sites 

(indicated by red dots) across the catchment. Moisture storage values were interpolated across the catchment using regression 

kriging.  Histograms show distribution of observed total storage values at all sites for each date.  γ values for semi-varioagrams 

have been binned, and Spherical models were used to fit semi-variograms. 
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 Figure 3.3 demonstrates van Genuchten water retention curves for available depth 

locations at six sites within the catena delineated in Figure 2.2.  Each site corresponds to 

a different landform and soil combination.   

 The curves for Weikert soil at the hilltop are similar at 10 and 40 cm depths in 

that they both have a high air-entry value and an effective release of moisture as matric 

potential becomes more negative.  The topographic location of the hilltop soil exhibits a 

strong control on the shape of these curves, since moisture at the highest topographic 

10 cm: 20 cm: 40 cm: 80 cm: 100 cm: 

(Swale: Berks)(Hillslope: Weikert)(Summit: Weikert)

10:  R2 = 0.86  α = 0.138 n = 1.22 θ
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20:  R2 = 0.85  α = 0.013 n = 1.24 θ
s
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40:  R2 = 0.87  α = 0.271 n = 1.20 θ
s

= 0.283

10:  R2 = 0.83  α = 0.027 n = 1.28 θ
s

= 0.279

20:  R2 = 0.75  α = 0.067 n = 1.18 θ
s
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10:  R2 = 0.87  α = 0.054 n = 1.17 θ
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s

= 0.438
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Figure 3.3: Soil Moisture Retention Curves using the van Genuchten retention model for sites along a toposequence in Shale Hills (see 

Figure 2).  Soil moisture retention curves were fitted for all available depths at each site.  Parameters and R-square values for each 

function are listed in the plot.  The curves and observed data points are color-coded according to depth. 
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position may more easily flow down-gradient laterally. The curves for Weikert soil at 

60B overlap, as the data distributions themselves are similar; this indicates that soil 

profiles on this planar hillslope position are relatively homogeneous with depth.   

 The swale soils’ curves show a marked contrast with the hilltop and hillslope 

curves in that the deepest curve has “flipped” positions with the 10 cm curve by being 

distinctly higher on the y-axis.  Site 53B is a medium depth site on a steep-sloped, side-

swale location.  Site 55D is a deeper site located on a side swale, further downslope from 

53B. The slope is less steep at its location and the upslope contributing area greater, 

which may explain the more gradual release of moisture at 10 cm.   

 The 100 cm curve for the center-swale Rushtown soil is more gradual, likely from 

a significant flux of vertical and lateral moisture.  Gravimetric moisture influence is high 

in this location, indicating the possible presence of large cracks in the C horizon.  All 

Ernest soil valley curves indicate a gradual release of moisture.  This is physically 

expected, as the deep soil in the valley is a focal point of lateral moisture fluxes from 

upslope areas on both North and South hillslopes. 

 The differences between retention curves for locations in different soil series and 

landform units at two different depths suggest that soil series, landform units, and depth 

factors control variance of retention parameters across the Shale Hills catchment.  Table 

3.1 reveals 3-way ANOVA results of each moisture retention parameter compared to 

depth, soil series and landform unit factors.  In all parameters at least one of the soil 

series, landform unit and depth factors or associated interactions significantly controlled 

variance for each parameter.  
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 Value ranges are similar for all the van Genuchten parameters among different 

depths (Figure 3.4).  θs has significant differences between soil series and landform units 

at each depth.  The low-laying Ernest valley soils have significantly higher saturation 

values than other soil series for each horizon.  This is physically consistent with both the 

potentially high moisture accumulation in the catchment valley and the higher matrix 

pore volume in valley soils resulting from relatively greater clay content. 

 The α parameterwas significantly higher at 40 cm depth in hilltop landform 

locations and significantly lower in valley locations.  As hilltop sites are among the 

shallowest in the catchment, unconsolidated shale bedrock or rocky C horizons may 

contribute to macropores resulting from cracks and spaces between coarse material.  A 

relatively impermeable layer appears in some valley sites at 40 cm depth, which would 

restrict macropore flow, as this layer is dense and prismatic.    

Mean Sq Error Pr - value Mean Sq Error Pr - value Mean Sq Error Pr - value

Depth 0.285 0.625 0.0000143 0.927 0.057306 <0.001 ***

Soil Series 0.223 0.945 0.0042813 0.040 * 0.205408 <0.001 ***

Landform 3.914 0.021 * 0.0003228 0.902 0.040478 <0.001 ***

Depth*Soil Series 1.806 0.197 0.0027081 0.173 0.018857 0.001 **

Depth*Landform 1.327 0.342 0.0024987 0.219 0.00854 0.104

Soil Series*Landform 2.988 0.114 0.0013615 0.369 0.105304 <0.001 ***

Depth*Soil Series*Landform 0.914 0.381 0.0001259 0.785 0.006848 0.198

Residuals 1.186 0.0016809 0.004109

Mean Sq Error Pr - value Mean Sq Error Pr - value Mean Sq Error Pr - value

Depth 601.05 <0.001 *** 16.4064 <0.001 *** 423.69 0.077 .

Soil Series 84.79 <0.001 *** 0.3455 0.031 * 106.57 0.530

Landform 38.27 0.016 * 0.0929 0.535 295.92 0.088 .

Depth*Soil Series 58.38 <0.001 *** 0.2522 0.098 . 75.76 0.689

Depth*Landform 53.58 0.002 ** 0.2955 0.076 . 112.73 0.473

Soil Series*Landform 0.04 0.950 0.051 0.527 1001.75 0.007 **

Depth*Soil Series*Landform 32.06 0.087 . 0.5324 0.042 * 91.04 0.411

Residuals 10.87 0.1271 134.14

Signifigance Codes:  '***'  0.001 '**'   0.01  '*'  0.05  ‘.’   0.1  

ln(a ) Gardner & Campbell ln(b) ψe

ln(α) log(n ) θs

Table 3.1: Three-Way ANOVA of each soil water retention parameter against soil series, landform unit and depth factors.  Significant 

categorical controls on the variance of parameter values were revealed through a generalized linear model.  Some parameters were log-

transformed before analysis to satisfy the normality requirement for the test.    
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Figure 3.4: Boxplots of θs, n, α and ψe parameters for all depth-locations grouped by soil series. Letters indicate significant 

differences of means for parameter values among different soil series within each depth interval according to a Tukey HSD test 

at p < 0.05.  Numbers above each box indicate sample size. α and ψe were natural log-transformed and n log10-transformed to 

maintain normality for the Tukey HSD test.  
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 The significantly higher mean n value for Blairton soil at 20 cm is attributed its 

deep, well-structured profile that allows moisture to percolate vertically from a near-

surface depth effectively.  The lowest n value at 20 cm in Ernest soils is realistic 

considering the soil’s lower elevation and water restricting layer below 20 cm that stunts 

vertical moisture movement.  The mean n value for Ernest is lower at 40 cm, which is a 

typical depth where the fragic horizon occurs for this soil in Shale Hills.   

Figure 3.4 (continued): Boxplots of θs, n, α and ψe parameters for all depth locations grouped by landform units. Letters indicate 

significant differences of means for parameter values among different landform unit within each depth interval according to a Tukey 

HSD test at p < 0.05.  Numbers above each box indicate sample size. α and ψe were natural log-transformed and n log10-

transformed to maintain normality for the Tukey HSD test. 
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Table 3.2 shows a correlation matrix of topographic variables, hydraulic 

parameters and soil texture content.  The α parameter is well correlated with other 

hydraulic parameters, however the only topographic variable it is correlated with is 

topographic wetness index.  The α parameter is negatively correlated with ψe, which 

reinforces the empirically derived notion that α is approximately the inverse of air-entry 

pressure (van Genuchten, 1980).  The negative correlation with n implies that macropore 

flow is generally higher in locations with less effective release of moisture or greater pore 

size distribution.  This is realistic in valley and center swale depths where cracks exist in 

the massive or sub-angular soil structure.   

Since α is significantly different between landform units at the 40 cm depth 

(Figure 3.4), the significantly negative association with TWI in Table 3.2 may stem from 

generally higher macropore flow occurring at 40 cm depth in landform units with 

substantially lower potential wetness. The lack of correlation between α and texture 

variables further indicates that this is a structure as well as a textural parameter.  It may 

be high in clayey soil with cracks between aggregates, but also high in hilltop and 

hillslope soil with large spaces between coarse material.  Low α values may exist in 

unstructured hillslope sites, which have silty particles between coarse fragments and 

valley locations with high clay content and little ped aggregation.  Texture generally 

becomes a control on α when soil is unstructured (Hodnett and Tomasella, 2002).   
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It is clear that surface curvature and upslope contributing area place a relatively large control on n.  These topographic 

correlations indicate that i) soils with high upslope accumulation areas release moisture less effectively  ii) areas with negative, or 

concave, curvature generally release moisture more effectively.  While the negative correlation with upslope contributing area makes 

sense, the n parameter’s association with surface curvature is somewhat counter-intuitive.  Areas with negative curvature generally 

have deeper and more weathered soil.  If n is negatively correlated with surface curvature or in soil with negative curvature near the 

surface, it may be suggested that moisture effectively drains vertically from the surface in deep soil.  Figure 3.4 shows n is 

significantly higher at 20 cm in deep and concave Blairton soil, while correlation matrices in Appendix D show stronger negative 

Table 3.2: Spearman correlation matrix of soil hydraulic parameters and soil-terrain attributes from all depth-locations in the Shale Hills.  Values that are significant at p < 0.05 are highlighted in 

red and the p-value is indicated in parentheses.   

Parameters α n θs a ψe - b Slope Value TWI Curvature Elevation Upslope Area Depth to Bedrock Sand % Silt % Clay % Organic Matter % Rock Fragment %

α 1

n -0.28 (<0.001) 1

θs 0.15 (0.026) 0 1

a -0.24 (<0.001) 0.35 (<0.001) 0.25 (<0.001) 1

ψe -0.84 (<0.001) 0.17 (0.008) -0.26 (<0.001) 0.43 (<0.001) 1

- b -0.12 0.36 (<0.001) -0.11 0.89 (<0.001) 0.36 (<0.001) 1

Slope Value 0.1 -0.01 -0.07 -0.08 -0.14 (0.034) -0.03 1

TWI -0.14 (0.030) 0.03 0.2 (0.002) 0.1 0.14 (0.028) -0.02 -0.64 (<0.001) 1

Curvature 0.07 -0.13 (0.050) -0.25 (<0.001) -0.11 -0.06 0 0.35 (0.005) -0.75 (<0.001) 1

Elevation 0.02 0.09 -0.28 (<0.001) 0.03 0.03 0.16 0.39 (0.002) -0.50 (<0.001) 0.32 (0.011) 1

Upslope Area -0.06 -0.14 (0.033) 0.48 (<0.001) 0.02 -0.03 -0.19 (0.017) -0.07 0.65 (<0.001) -0.54 (<0.001) -0.32 (0.011) 1

Depth to Bedrock -0.05 -0.04 0.55 (<0.001) 0.05 -0.07 -0.18 (0.004) -0.07 0.38 (0.003) -0.58 (<0.001) -0.23 0.66 (<0.001) 1

Sand % 0.13 -0.11 -0.07 -0.17 (0.045) -0.09 -0.13 (0.005) 0.27 (0.002) -0.08 -0.17 (0.046) 0.37 (<0.001) 0.01 0.19 (0.028) 1

Silt % -0.11 0.14 -0.03 0.18 (0.038) 0.1 0.19 (0.028) -0.22 (0.010) 0.07 0.22 (0.009) -0.32 (<0.001) -0.04 -0.24 (0.005) -0.85 (<0.001) 1

Clay % -0.1 0 0.34 (<0.001) 0.12 0.05 -0.04 -0.25 (0.003) 0.17 (0.041) -0.13 -0.27 (0.001) 0.18 (0.032) 0.22 (0.012) -0.53 (<0.001) 0.11 1

Organic Matter % -0.04 0.16 -0.22 (0.010) 0.35 (<0.001) 0.15 0.49 (<0.001) -0.08 -0.05 0.1 -0.06 -0.19 (0.026) -0.20 (0.017) -0.05 0.05 0.03 1

Rock Fragment % 0.15 -0.17 (0.044) -0.50 (<0.001) -0.29 (<0.001) 0.01 -0.08 0.01 -0.08 0.11 0.1 -0.28 (<0.001) -0.40 (<0.001) 0.22 (0.009) -0.19 (0.024) -0.23 (0.007) 0.08 1
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correlations with n at near-surface depths of 10 and 20 cm.  The n parameter is negatively 

correlated with rock fragments.  This follows the logic that moisture is generally released 

more effectively at the near surface in deeper, well weathered soil, which would contain 

less rock fragments.   

 The θs parameter is influenced by both pore space volume and amount of 

moisture flux occurring in a depth location, and correlation results show that θs is 

controlled by both topographic and texture variables.  The significant topographic 

correlations indicate that i) areas with deep depth to bedrock contain depths with higher 

moisture saturation, ii) more concave landscape positions have higher saturated moisture 

contents, iii) lower elevation increases saturated moisture contents, iv) locations with 

extensive upslope contributing areas tend to have higher saturated moisture contents, and 

v) areas that are potentially wetter have greater saturated moisture contents.   

A strong positive correlation exists with clay, which is reasonable in that soils 

with high clay contents tend to hold more moisture.  The strong negative correlation with 

rock fragments is reasonable, because higher rock fragment content allows for less space 

to be filled with moisture at saturated field conditions.  The negative control organic 

matter places on saturated moisture content may be counter-intuitive at first, since 

organic matter tends to increase a soil’s capacity to hold moisture.  In undisturbed forest 

settings, such as Shale Hills, higher organic matter may indicate a greater presence of 

roots at a location.  An increased amount of roots would decrease the maximum capacity 

of a soil moisture content, since roots occupy space and extract moisture from soil.   
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3.2 Spatial Distribution of the van Genuchten Parameters across the Shale 

Hills Landscape  

 

To assess the spatial variability and patterns of soil moisture characteristics across 

the Shale Hills catchment at near-surface and deep depths, spatial models for 10, 20, 40, 

80 and 100 cm depths were created for the α, n and θs van Genucthen parameters.  Table 

3.3 displays parameters for each spatial model and any significant topographic covariates 

used as external trends for each model.  Figure 3.5 shows a series of semi-variogram 

curves for near-surface 20 cm depth and deep profile 80 cm depth.  The standard 

deviation of each moisture retention parameter across space is represented by envelopes 

in the semivariogram figures.       

The n parameter at the near-surface 20 cm has a relatively long range of 62 meters 

with a positive spatial trend with depth to bedrock.  Areas with deeper soil may drain 

moisture from 20 cm depths relatively more effectively, because of greater profile extent 

for vertical moisture release.  The range dramatically dropped to 3 meters at the 80 cm 

depth for n, indicating that the effective drainage characteristic is more similar in the 

deep profile across the catchment.  The negative relationship between topographic 

wetness index and n at 80 cm indicates that soil 80 cm below the surface at sites with 

higher potential wetness drain moisture more gradually.   
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A disparity in range values also exists in θs at 20 and 80 cm, suggesting that 

significant differences exist in the soil porosity and field saturation across the catchment 

at 20 and 80 cm.  The smaller 14.3 meter range at 20 cm suggests that soil porosity is 

more homogeneous at this depth.  Saturated moisture at 80 cm has a higher range at 31.2 

meters, which is a function of disparate soil porosities. Tensiometers at 80 cm are 

submerged in either BC horizon or C horizon.   

Table 3.3: Semivariogram parameters for Figure 8.  The van Genuchten parameter values were transformed with the Lambda 

parameter to satisfy spatial isotropy.  The range is the distance on the x-axis at the inflection point of the curve.  The nugget is the 

intercept of the curve on the y-axis, and the partial sill is the distance on the y-axis between the nugget and maximum height of the 

curve.  Correlated topographic covariates used in spatial modeling are listed with significance indicated (**** p<0.001, *** 

p<0.01, ** p<0.05, *p<0.1)   
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 There is also a notable difference in ranges for α values between 20 and 80 cm.  

The higher α range at 20 cm is an indication of disparate soil structure at the near surface 

across the catchment.  The 20 cm depth may be home to a dense layer as in some Ernest 

sites, aggregated clayey soil in Blairton sites, or coarse, unstructured soil at Weikert sites. 

The lower range for α at 80 cm suggests that the differences in soil structure at 

this depth are less pronounced among different sites across the catchment.  The positive 

correlation with elevation at 80 cm indicates that sites with greater elevation tend to have 

Figure 3.5: Series of semi-variograms showing semi-variance of α, n and θs at shallow (20 cm) and deep solum (80 cm) depths 

across the catchment. The γ values for each semi-varioagram have been binned.  The covariance models in each semi-variogram are 

Matern functions, and parameters for the covariance functions were optimized using a Bayesian estimation procedure. Parameters 

were transformed using a lambda value (Table 3.3) optimized by a maximum likelihood algorithm during spatial model fitting to 

maintain independence and isotropy. Dotted lines indicate 95% Confidence Interval envelope of the data cloud.  
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more macropore controlled flow at 80 cm.  This makes sense when considering the 

higher amount of rock fragments that are present in locations within shallower soil or C 

horizon.      

Figure 3.6 displays a series of maps depicting θs values at 10, 20, 40, and 80 cm 

depths in Shale Hills created through regression kriging.  Patterns of θs on maps at each 

depth consistently show the highest degree of field saturation is located in sites close to 

Figure 3.6: Maps of θs at four different depths over Shale Hills.  Regression kriging with significant topographic variables was 

used for interpolation.  A Bayesian optimization was employed to optimize spatial model parameters. Areas with soil shallower 

than featured depth have been masked.   
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the catchment outlet.  Lower field saturation values are consistently found on convex 

hillslopes and side-slope areas at each depth.   

Interpreting field saturation throughout the catchment at different depths has 

ecological modeling significance as different tree species can be related to varying 

degrees of wetness present in the root zone.   As field saturation indicates a soil’s 

maximum moisture holding capacity and is related to both topography and porosity, 

catchment-wide θs maps at multiple depths may also have contributions to catchment-

scale hydrological outflow modeling, as well.  Furthermore, mapping of field normalized 

moisture content ( 
s


) is possible with maps of θs.  This is useful in determining the 

relative degree of moisture content that is present within a soil at a given time for a  

certain depth.  

 

 

 

3.3  General Terrain and Soil  Characteristics of Hydropedological 

Functional Units  

 Abundant correlation among raster variables is evident from the correlation 

matrix in Table 3.4. Solum θs storage and depth to bedrock were chosen for delineation of 

hillslope HFUs.  Although depth to bedrock was used in interpolating solum θs storage, 

depth to bedrock shows more accurate distinctions between shallow hillslope soil and 

intermediate deep hillslope soil than θs and thus was used in tandem with θs storage.  The 

θs storage suggests unique information relative to depth to bedrock in that it shows higher 

soil moisture holding capacity in the footslope areas near the catchment outlet, which is 
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not exhibited distinctly in the depth to bedrock.  This is important for maintaining a 

comprehensive incorporation of solum scale soil water retention characteristics for soil 

close to the catchment outlet.  

 Even though depth to bedrock and θs storage were the only two raster datasets 

selected for PCA, they carry general patterns from multiple inter-correlated topographic 

variables as a consequence of their generation from regression kriging. The PCA was 

necessary in reducing the complex and correlated data structure of the two compound 

raster datasets.  Another reason to perform a PCA on the two raster datasets was the 

PCA’s capability of relating a dataset of soil depth information with a dataset of saturated 

moisture storage. Although both rasters appear similar, the physical attributes each 

dataset expresses is not easily relatable.  Depth to bedrock expresses a static soil property, 

but θs storage is derived from the aggregation of modeled parameters calculated from 

dynamic θ(ψm) data.  The scaling of both raster datasets before PCA prevented depth to 

bedrock data from dominating the unique information found within the θs storage data. 

 Figure 3.7 displays a barplot showing the resulting variances explained by each 

PC derived from the analysis.  As expected, one PC dominates the variance, by 

explaining 97.1 % of the total variance among depth to bedrock and θs storage with 2.9 % 

left as noise.  Both variables have a high positive score loading of ~ 0.70 each on PC I, 

indicating that PC I explains soil weathering and maximum field profile-scale soil 

moisture holding capacity.     
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Spearman Correlation α θs n Slope TWI Curvature Elevation Upslope Area Soil Depth Sand Silt Clay

α Geometric mean 1

θs Storage -0.01 1

n Geometric mean -0.21 (0.097) 0.1 1

Slope 0.09 -0.50 (<0.001) 0.25 (<0.001) 1

TWI -0.07 0.70 (<0.001) -0.19 -0.59 (<0.001) 1

Curvature -0.04 -0.60 (<0.001) -0.03 0.37 (0.003) -0.64 (<0.001) 1

Elevation -0.11 -0.50 (<0.001) 0.30 (0.021) 0.42 (<0.001) -0.52 (<0.001) 0.26 (0.045) 1

Upslope Area -0.04 0.52 (<0.001) -0.18 -0.46 (<0.001)  0.81 (<0.001) -0.67 (<0.001) -0.43 (<0.001) 1

Soil Depth -0.01 0.80 (<0.001) 0.04 -0.46 (<0.001) 0.64 (<0.001) -0.66 (<0.001) -0.41 (<0.001) 0.55 (<0.001) 1

Profile Sand Storage 0.21 0.47 (0.003) -0.03 0.01 0.34 (0.038) -0.55 (<0.001) 0.06 0.2 0.59 (<0.001) 1

Profile Silt Storage 0.01 0.79 (<0.001) 0.22 -0.35 (0.034) 0.57 (<0.001) -0.50 (0.001) -0.42 (0.008) 0.33 (0.046) 0.82 (<0.001) 0.55 (<0.001) 1

Profile Clay Storage 0.02 0.79 (<0.001) 0.16 -0.40 (0.013) 0.60 (<0.001) -0.63 (<0.001) -0.34 (0.039) 0.40 (0.013) 0.85 (<0.001) 0.55 (<0.001) 0.87 (<0.001) 1

Table 3.4:  Correlation matrix of raster datasets from a Spearman non-parametric correlation test.  Red emboldened correlation coefficients indicate a 

significant correlation between variables at p < 0.05, and blue emboldened correlation coefficients represent a significant correlation at p < 0.10 

Raster Principal Components

97.1% 2.9%

Figure 3.7:  Bar plot depicting the amount of variance explained by PCI and PCII.  

PCI explains the vast majority of the variance and was used for fuzzy c-means 

cluster analysis 
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 PC I was used to obtain a rotated data value relative to rotated component space 

for each grid cell for input into fuzzy c-means clustering.  Based upon preliminary 

analysis of raster datasets and the limiting number of units expressed in the two raster 

datasets analyzed in the PCA, three clusters were designated for the c-means cluster 

algorithm.  Figure 3.8 shows a raster of 3 delineated clusters resulting from the cluster 

analysis.  Cells were assigned a cluster based upon the maximum proportion value 

associated with the potential clusters.  

 

Figure 3.8:  Raster of 3 clusters based upon multivariate analysis and clustering of Depth to Bedrock and θs 

Storage raster datasets.  TDR-Tensiometer site locations are shown and symbolized according to ascribed 

soil series. 



 70 

The influence of each contributing raster may be seen in Figure 3.9.  The three 

clusters were named “Deep Soil, High Storage, Concave Hillslope” (DSHSCH), 

“Intermediate Soil, Medium Storage, Convex Hillslope” (ISMSCH) and “Shallow Soil, 

Low Storage, Planar Hillslope” (SSLSPH).  The SSLSPH cluster encompasses planar 

areas with shallow soil and the DSHSCH cluster occurs in concave areas with deep soil. 

The ISMSCH designation for the green colored cluster occurs predominately on the 

convex relief between the concave hillslope and planar hillslope landform areas and 

encompasses both Berks and deep Weikert soil series.  The ISMSCH acts as a transition 

zone of fluid and material flux between the SSLSPH and the DSHSCH units.  The PCA 

and subsequent fuzzy c-means clustering delineated three main hillslope units out of the 

depth to bedrock and θs storage raster data that were very similar to units delineated for 

both datasets in the preliminary analysis (Table 2.1). The incorporation of solum θs 

storage did contribute unique catchment outlet information, while accurate catchment-

wide soil depth information was apparent preserved with the depth to bedrock raster 

dataset.  

  The threshold slope value used to separate a Valley unit from the DSHSCH and 

ISMSCH clusters was informed by analyzing the slope map. From Figure 3.9, it is 

apparent that slope values up to class C (green) seem to separate a valley unit from the 

remainder of both DSHSCH and ISMSCH clusters.  In order to delineate a distinct valley 

unit, the threshold slope value was increased slightly from 0.150 to 0.185m/m.  This 

threshold slope value allowed the inclusion of almost all the low elevation raster cells 

typically associated with the Ernest soil series into a Valley unit.  
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As EMI surveys and profile moisture storage maps indicate a separate function for 

the valley area from the origin of the ephemeral stream to the catchment outlet, the 

elevation of the stream origin was used to limit the Valley unit.  The elevation of the 

stream origin is approximately 272 meters above sea level, and this was used with the 

LiDAR elevation data to abbreviate the Valley, which slope value was not capable of 

doing by itself. 

Park and vande Giesen’s analysis procured a log(As) value for a summit landform, 

which was then in turn used with slope to concisely delineate a Flat Summit unit from the 

SSLSPH cluster.  The threshold slope value for the Flat Summit is slightly less than slope 

class C at 0.130 m/m, so that a muddled over-reach of the Flat Summit into the SSLSPH 

Figure 3.9: Map of slope class delineations for Shale Hills.  Soil Series boundaries are 

demarcated in bold.  Slope Class D (0.15 – 0.25) does exist within the Ernest soil series boundary   
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unit could be avoided.  To extend a consistent naming convention for all HFUs, the 

Valley unit is officially termed Deep Soil, High Storage, Flat Valley (DSHSFV) and the 

Summit unit is termed Shallow Soil, Low Storage, Flat Summit (SSLSFS).    

 At the conclusion of the process, 5 finalized HFUs were delineated.  These final 

units represent a precision map of similar soil-terrain-hydrologic functional units created 

from raster sets embodying datasets that represent a variety of natural processes including 

soil weathering, topographic hydrologic gradient, surface-induced moisture flux 

direction, soil water retention capacity, and soil-stream dynamics Table 3.5 displays 

summary statistics of raster data for each HFU category.  Figure 3.11 clearly shows the 

apparent similarity between the precision soil survey and HFU map. 

Figure 3.10: Final HFU map with a DSHSFV unit (blue) separated from the DSHSCH (cyan) and ISMSCH 

(green). A SSLSFS (red) was separated from the SSLSPH (yellow).  The ephemeral stream is demarcated and is 

shown to reside within the DSHSFV unit.  
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Table 3.5: Summary statistics (mean and standard deviation) of raster variables for each HFU category 

 

Figure 3.11:  Hydropedological Functional Units with 2
nd

 Order Soil Series delineation and catchment 

ephemeral stream demarcation 
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3.4 Validation and Cross-validation of Hydropedological Functional Units 

with Soil Moisture Data  

 

 The final HFU raster (Figures 3.10 and 3.11) represents a quantitative synthesis of 

similar soil-terrain-hydrologic information, and as such, the HFUs reflect consociations 

of major controls driving soil-hydrologic processes.  Soil series designations reflect a 

synthesis of soil properties and landscape patterns, as well.  Park and vande Giesen 

(2004) attempted to delineate purely terrain-based units (LFUs) in Australia that 

represent topographic functions.  As HFUs represent more information than LFUs, it is 

expected that soil moisture data across time would be well correlated with HFUs and 

would perhaps out-perform LFUs in a validation procedure involving observed soil 

moisture data.   

 Table 3.6 shows the outcome of the linear model with HFUs, LFUs and soil series 

each as predictors to solum moisture storage collected at 31 different dates across 

multiple years and wetness conditions.  The date with the highest average observed 

moisture storage and the date with lowest average observed solum moisture storage were 

used as individual responses.  The predictor with the highest R
2
 and lowest residual 

standard error more accurately predicts total moisture storage patterns for each time 

period.  ANOVA results of each model and the Coefficient of Variation (CV) for each 

category are also posted. 
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Between HFUs, LFUs and soil series, HFUs showed a significantly better ability 

to predict total moisture storage than soil series and LFUs.  Soil series, which takes into 

account soil depth, slope and other soil properties, did better than LFUs.  Purely terrain-

based landscape characterization does not directly represent subsurface processes or soil 

water retention, leading to a relative misalignment with respect to representing soil 

moisture storage patterns compared with soil series and HFUs. 

Table 3.6:  Results of linear and generalized linear models for each categorical predictor to 31 moisture total storage 

responses from dates in 2007 – 2010, a wet date (3/27/2007) and a dry date (7/30/2010).  The best diagnostics are 

highlighted in grey.  ANOVA and Coefficient of Variation results of each model are shown to the left of each predictor. 
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Figure 3.12 displays R
2
 diagnostics of HFUs, LFUs and soil series as predictors to solum moisture storage for separate dates 

from December 2006 to November 2010.  HFUs and soil series outperform LFUs consistently at predicting solum moisture storage 

across all wetness conditions across several years.  As solum moisture storage may be directly related to soil weathering and soil 

properties, soil series and HFUs display the importance of characterizing subsurface processes and soil properties when delineating 

landscape scale soil units.  HFUs also consistently outperform soil series in this context, as well.   

Figure 3.12: Performance of 3 landscape characterizations in predicting total moisture storage within a linear model.  The y-axis shows dates of 

moisture collection with average total storage from observations shown directly above.    Lines indicate adjusted R
2
 values indicating performance of 

each predictor in predicting total moisture storage in a linear model for each date.    
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Soil water retention is a fundamental soil-hydrologic function that was integrated 

into HFUs with the solum θs storage map.  The precision of LiDAR raster maps, 

integration of solum moisture retention capacity of a soil, and refinement of depth to 

bedrock instill further advantages within HFUs in predicting solum moisture storage over 

soil series.  In this sense, HFUs are describing the same attributes as traditional soil map 

units but at a more precise and quantitative scale.    

 Volumetric moisture patterns at 10, 20, 40, 60, 80 and 100 cm depths were 

analyzed with HFUs, soil series and LFUs over the same time period as solum moisture 

storage.  From Figure 3.13, it is apparent that soil series and HFUs both predict 

volumetric moisture content with higher R
2
 values more often than LFUs.  The 

consideration of subsurface processes appears to aid the prediction of soil moisture at a 

point-depth scale over consideration of topography alone.  LFUs do better at predicting 

moisture at the 80 cm depth than other depths; this may be realistic when considering 

how LFUs may well characterize areas of distinct moisture accumulation function in the 

landscape. 

 HFUs perform similarly to soil series at 10, 20, and 80 cm depths.  HFUs do 

noticeably better than soil series overall at 40 and 60 cm depths, but soil series does 

better than HFUs at 100 cm depth.  The lower sample size of sites with solums at 100 cm 

somewhat nullifies the advantage soil series has at this depth towards overall 

performance in predicting solum storage.  HFUs increased performance at 40 and 60 cm 

depth may stem from differentiating sites by their solum’s maximum moisture field 

capacity.  A site’s general soil structure and texture content, storage of organic matter and 

degree of soil weathering influences its solum saturated moisture storage.      
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Figure 3.13:  Adjusted R2 diagnostic for linear modeling of volumetric moisture content at 10, 20, 40, 60, 80 and 100 cm depths with HFUs (blue), soil series (red), and LFUs 

(green) as predictors.  Data were individually modeled for 58 dates from 2006 – 2010.  The average volumetric moisture content in a specific depth from data collected at all sites 

in the catchment during a given date is shown on the bottom on each graph.  
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Results of a Tukey HSD multiple comparisons of average soil moisture solum 

storage across 2006 – 2010 act as a further assessment on the HFUs propensity to 

describe similar acting soil-hydrologic zones (Figure 3.14).  It is clear that HFUs show 

four significantly distinct groups of average moisture storage over a 3 year period, while 

soil series and LFUs show 3.  Soil series was more precise in showing 3 groups than 

LFUs, however.  The SSLSFS HFU and Summit LFU clearly store the least amount of 

moisture as these units discharge precipitation inputs relatively effectively.  The 

DSHSFV HFU and Ernest soil store significantly more moisture in their solums than the 

rest of the catchment.  It is apparent that defining Ernest soil extent based upon effective 

soil depth and redoximorphic features, while also defining the DSHSFV unit extent based 

upon higher observed profile moisture storage and higher ECa values adjacent to the 

ephemeral stream have aided both soil series and HFUs in predicting soil moisture 

patterns.   

The DSHSCH and ISMSCH HFUs are significantly different, while the Rushtown 

and Berks soil series are not differentiated significantly from average solum moisture 

storage.  This implies HFUs have an advantage over soil series of expressing areas of 

distinct average solum moisture storage across the concave and convex hillslope areas.  

The ISMSCH and the SSLSPH units are also significantly differentiated, and these units 

are well correlated with solum moisture storage patterns as shown by the ANOVA in 

Table 3.6.  The SSLSPH and SSLSFS units are not significantly different between each 

other, but do hold significantly less moisture than the other units.  Both of these units fall 

within the Weikert soil series extent.  Weikert soil was found to hold significantly less 

moisture than other soil.  
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HFUs do show a distinction of soil moisture patterns between units, but this study 

also determined whether they show a similar distinction with soil textural properties as 

soil series.  Figure 3.15 show a series of boxplots expressing significant difference among 

the HFUs in total profile texture storage of sand, silt, clay and organic matter.  Boxplots 

Figure 3.14: Boxplots of all solum 

moisture storage data points from 58 dates 

spanning 2006 – 2010 for individual 

categories in HFUs, soil series and LFUs.  

Numbers above the boxplot indicate 

sample size.  Letters show significant 

difference between categories of average 

solum moisture storage collected from the 

same aforementioned 58 dates from all 

TDR-tensiometer sites in the catchment 
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for soil series and LFUs are also shown.  No significant difference was found for rock 

content between any categories in each classification system.      

 From Figure 3.15, is apparent that HFUs do show a distinction of soil profile 

texture storage for each class.  HFUs display more significant differences in sand storage 

than soil series, however greater amounts of sand seem to lie in the Concave Hillslope 

locations and the Valley, implying that Rose Hill shale weathering processes may not 

follow a generally straightforward pattern.  Silt Content is predictably lower in Weikert 

soil and the Shallow Soil, Low Storage HFUs, because silt displacement is related to the 

alluvial processes.  Areas with greater moisture discharge tend to have less silt content, 

and areas of moisture accumulation tend to receive silt particles.  Organic matter is 

somewhat consistent across all coverage schemes, with the valley soils and landform 

registering with significantly higher organic matter storage and the DSHSCH and 

DSHSFV HFUs also showing significantly higher organic matter storage. 

      The soil survey delineation does distinguish separate areas of clay storage more 

effectively than HFUs.   The Berks soil series has a distinct intermediate storage of clay 

compared to Weikert soil and Rushtown, Blairton and Ernest.  The HFU classification 

did not capture the subtle and significant difference in clay storage; however this is a 

difficult feat since clay does weather away from shale rock fragments across the entire 

catchment relatively well. Since HFUs are generally comparable with soil series in 

showing distinctions in texture properties among different units, it may be stated that the 

delineated HFUs express sub-catchment units that can characterize relatively distinct 

basic soil properties close or at the precision of a soil survey.    
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Figure 3.15: Boxplots of total profile texture storage of clay, silt, sand and organic matter (OM) collected from 58 

different sites between categories of HFUs, soil series and LFUs.  A Tukey HSD test was applied to find significant 

differences among categories for each texture class at p < 0.05.  Numbers above boxplots indicate sample size.   
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 The 3-dimensional map in Figure 3.16 of HFUs assists in intuitively grasping the 

HFUs inter-related soil-hydrologic function as sub-catchment units.  The SSLSFS unit 

clearly acts mostly as a moisture dispersion zone, with soil moisture discharging from the 

shallow profiles of this unit towards the surrounding SSLSPH unit after precipitation 

events.  Some areas of edge of the catchment are not SSLSFS, as these areas have an 

upslope contributing area higher than the acceptable threshold for the SSLSFS unit.  The 

SSLSFS stores the least amount of moisture and has the least amount of silt, as much of 

the silt is discharged downslope out of the SSLSFS unit. 

 The SSLSPH unit directly receives moisture and material that is discharged from 

SSLSFS areas.  The SSLSPH is comparable to Weikert soil in that it covers a broad 

expanse of the catchment and has predominately planar surface curvature.  The soil in the 

SSLSPH unit is likely to be < 50 cm, owing to its generation partially from the refined 

depth to bedrock map.  Besides having shallow soil, the SSLSPH holds the least amount 

of clay along with the SSLSFS, and this implies that little relatively little soil weathering 

has taken place in this unit.  SSLSPH soil holds the least amount of moisture in the 

catchment, along with the SSLSFS unit. 

 The next unit after the SSLSPH in the catchment-wide gradient of moisture and 

material flux is the ISMSCH.  These areas are generally convex and have over 50 cm 

deep soil thickness, which differentiates it from the SSLSPH.  The best adjective for this 

unit is “transition”, as it is a transition between shallow, unstructured SSLSPH to deeper, 

more structured DSHSCH and DSHSFV units.  Every topographic and soil property 

attribute about the ISMSCH is relatively intermediate besides mean slope value (Table 

3.5).  The ISMSCH has the highest mean slope in the catchment, while also having 
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intermediate soil thickness and θs storage.  Steep slopes are present on swale side-slopes, 

where material that directly flushes off the SSLSPH towards the concave DSHSCH area 

is held.  Pockets of ISMSCH do interrupt the SSLSPH, which correspond to scattered 

convexities amidst the SSLSPH, occurring either from tree-throw, tree stands or non-

linear weathering processes.  The soils in these small ISMSCH convexities tend to be 

deeper than 50 cm and hold relatively more moisture than the surrounding SSLSPH.     

 After moisture flows out of the ISMSCH, it typically flushes directly into the 

DSHSCH.  The DSHSCH acts a channel of moisture and materials from the surrounding 

hillslope into much of the valley, and shares characteristics of both the DSHSFV and 

ISMSCH units.  The DSHSCH unit is home to the deepest recorded soil in the catchment, 

and this soil is located at the bottom of the large swale in the south-facing hillslope, just 

north of the DSHSFV unit.  This area acts as a bottleneck of material as matter moves 

down the Concave Hillslope unit towards the DSHSFV unit.  The DSHSCH holds 

significantly less moisture storage than the DSHSFV and significantly more than the 

ISMSCH unit does. Rushtown soil and the Swale LFU are the closest categorical 

comparisons to the DSHSCH, however the DSHSCH unit is better correlated with solum 

storage over time than either of these other units (Table 3.6).  The DSHSCH unit holds 

significantly higher silt content in its soil profile than other units along with the 

DSHSFV, and it holds the most overall sand content in within its soil relative to all other 

units in the catchment.   

 The DSHSCH unit also encompasses Blairton soil and low-elevation Rushtown 

that have < 0.185 m/m slope value, because the DSHSFV unit begins at the origin of the 

ephemeral stream.  This low-laying area of the DSHSCH does not incur continuously 
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standing water over the wet season from the ephemeral stream, indicating that any soil 

morphological properties that result in annual solum-to-surface saturation in the 

DSHSFV are absent or function differently in the DSHSCH unit.  Rushtown and Blairton 

soils both have higher standard errors of predicting multiple solum moisture storage 

values than the DSHSCH HFU indicating that the combination of Rushtown and Blairton 

soils within the DSHSCH unit does not majorly affect the DSHSCH unit’s propensity to 

predict soil moisture patterns.   As the DSHSCH unit contains deeper depth to bedrock on 

average, but holds significantly less observed total moisture storage than the DSHSFV 

unit, it is apparent that the soil in the DSHSFV unit functions differently hydrologically 

than soil in the low-elevation DSHSCH unit. 

 The final destination for moisture naturally inputted into the catchment is the 

DSHSFV unit, before ultimate exit at the catchment outlet.  This unit is very well 

correlated with moisture storage response over time and holds a significantly higher 

amount of moisture storage, indicating that the DSHSFV is a truly distinct unit from a 

hydrologic process standpoint.  DSHSFV soil has significantly less overall sand content 

in the solum than the DSHSCH unit. Both fragic properties and gleying were found in 

soil located within the DSHSFV unit during the soil survey, indicating that the 

substantial, solum-spanning saturation this soil undergoes every year has had 

morphological impacts over time.  The DSHSFV has the highest consistent TWI than all 

other units, but has a lower mean soil thickness than the DSHSCH unit.  This could be 

explained by the moisture flux that occurs in the DSHSFV, which may carry a 

disproportionate amount of soil material directly out of the catchment relative to material 

moving in from adjacent DSHSCH or ISMSCH areas.  The significantly high clay and 
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silt content found in DSHSFV soil points to multiple soil accumulation processes 

occurring in the DSHSFV.  Both continuous residual shale weathering and alluvial 

material flux occur simultaneously in this unit.  The DSHSFV also has the highest 

significant Organic Matter storage in its soil, alluding to a concentrated deposition of 

leaves and other organic residue.  

Figure 3.16: Three-dimensional rendition of Hydropedological Functional Units depicting areas of similar 

soil, terrain and hydrologic properties delineated for the Shale Hills.  The stream is pictured, colored 

white. 
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Chapter 4: Summary and Future Work 

 

4.1 Summary 

 Extensive soil moisture retention data collected across the Shale Hills catchment 

at multiple depths showed that soil water retention is mainly controlled by soil type and 

landscape position in the catchment.  The ANOVA results and Tukey difference of means 

tests indicate that θs is significantly different between soil series and landform units at all 

depths. This stems from the physical influence of soil structure, soil pore space, and 

general landscape position on the depth-scale θs parameter. The n parameter is 

significantly different across seperate soil series at the 20 cm depth, and this was deemed 

a function of the relative ease for moisture to effectively drain vertically or laterally from 

20 cm depth in each soil.  The α parameter is significantly different between landform 

units at 40 cm depth, which is related to pronounced differences of soil structure between 

landform units at 40 cm depth across the catchment.  Topographic Wetness Index, depth 

to bedrock, and curvature are significant variables that control soil moisture retention 

parameters at the landscape-scale.   

  Catchment-wide spatial modeling of retention parameters revealed differences in 

ranges between three key van Genuchten parameters at the near-surface 20 cm depth and 

deeper subsurface at 80 cm depth.  Moisture content at field saturation was found to be 

more variable across space in the deeper part of soil profile than in the near-surface 

because of soil structure and porosity differences among sites with deep θs measurements. 

The α and n parameters had a higher spatial variance at the near-surface.  The higher 

spatial variance for α at the near-surface is related disparities of soil structure in the B 
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horizon among sites at 20 cm, while the higher spatial variance for n at the near-surface is 

generated by differences in effective soil depth between sites across the catchment, which 

controls effective vertical moisture release from the near surface. 

 Mapping soil moisture retention parameters was accomplished through the use of 

Bayesian regression kriging with Gaussian random field spatial modeling.  Maps of 

continuously interpolated soil retention parameter values across the catchment can be 

utilized in hydrological and ecological modeling, and may inform future sampling 

locations for soil moisture retention data collection. 

 Through integrated analysis of topographic, soil depth, and landscape-scale soil 

water retention parameters, five HFUs were identified that exhibit contrasting landscape-

soil-hydrology features.  A sequence of 41 maps (from April 2008 to November 2010) of 

catchment-wide total soil moisture storage in solum showed clear pattern of the five 

HFUs.   

 The 5 rasterized HFUs showed distinctions in average total moisture storage and 

described soil moisture patterns slightly better than the detailed soil series map developed 

for the Shale Hills, but much better than the rasterized Landform Units (LFUs) delineated 

with Park and vande Giesen’s (2004) method.  The HFUs showed comparable 

distinctions in soil textural properties as the soil series map.  According to an ANOVA 

test, HFUs were better correlated with total soil moisture storage as categories than soil 

series and LFUs across 31 dates from 2007 to 2010.  The HFUs also performed better in 

predicting total moisture storage categorically than the soil series and LFUs for 54 

separate dates from 2006 to 2010 according to diagnostics from linear modeling.   
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 To obtain all topographic, soil property and soil water retention parameter maps 

for creating HFUs in a catchment, the following procedures must be undertaken: 

 1) Topographic data: LiDAR flyover for high resolution (1 x 1 meter) DEM 

2) Depth to Bedrock data: Auguring campaign to adequately span an entire 

catchment or an extensive GPR survey campaign.  Regression kriging should be used in 

interpolating depth to bedrock with topographic covariates obtained from 1 

3) Soil water retention data (θs parameter): TDR-tensiometer sites to span a 

catchment Regression kriging should be used in interpolating soil water retention data 

with topographic covariates or depth to bedrock obtained from 1 and 2 

The above procedures together are time-consuming and expensive.  To 

characterize soil water retention relatively straightforwardly for another catchment or 

landscape, soil cores may be collected to obtain θs data in lab analysis or obtain cores for 

KuPF analysis.  

 Through this study it has been shown that catchment-wide soil water retention is 

possible to characterize, and catchment-wide soil water retention data may be used in 

tandem with topography and soil depth to delineate soil-terrain-hydrological functioning 

units that accurately represent general total moisture storage patterns when compared 

with a soil survey.  This study should indicate that additional efforts could be directed to 

refine the delineation of sub-catchment soil-terrain-hydrologic units and assess how sub-

catchment units may individually control higher scale processes, such as total catchment 

discharge and catchment-scale tree-water uptake. 

 This study is also serves as a positive reinforcement for methods used by soil 

scientists in segregating areas of similar soil functional characteristics in the landscape.  
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This research used digital topographic and soil property information to delineate HFUs, 

while is soil scientists in the field also use topography and local soil properties to guide 

their understanding of how soil series are delineated in the landscape.  Pedologists are 

also concerned with the functional relationship soil has with the landscape (Jenny, 1941), 

and the characterization of landscape-soil functional relationships is reliant upon 

topographic and soil property information used in this research.  Both soil series and 

HFUs performed considerably well in predicting soil moisture patterns in Shale Hills.  

The computer delineation of HFUs closely resembled the 2
nd

 order soil survey performed 

in the field.   

   

  

4.2 Future Work 

  

 Saturated soil hydraulic conductivity (Ksat) is routinely obtained through lab 

anaylsis.  As this represents one point on the curve, unsaturated hydraulic conductivity 

could render a more complete hydraulic conductivity curve up to potentials more 

negative than – 850 mBar. This would allow the characterization of a soil’s hydraulic 

conductivity to go beyond the upper limit for the tensiometers used in this study for the 

field monitoring of soil matric potential.  

 Unsaturated soil hydraulic parameters obtainable through devices such as KuPF 

may work in the same manner as Ksat or other soil hydraulic parameters investigated in 

this study.  Parameters obtainable from KuPF analysis may also be used to refine HFUs 

delineated in this study.  However, although KuPF analysis is theoretically able to 

provide data for a conductivity curve to very negative potentials and real θr conditions, it 
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is obtained through a soil core, and does not characterize data collected in situ in natural 

settings.  Furthermore, edge effects and soil disturbance are potential issues that must be 

handled carefully during soil core collection.  Therefore, in situ monitoring of soil matric 

potential beyond the upper limit for the tensiometers is highly desirable, which is 

currently on-going in the Shale Hills Critical Zone Observatory study.  
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Appendix A:  Maximum Likelihood Optimization Procedure 

 The optimization of van Genuchten parameters was performed using a Maximum 

Likelihood Estimation (MLE) algorithm in R (package: bbmle).  The standard method of 

optimizing van Genuchten parameters to fit θ(ψm) data in hydrologic literature is the 

Levenberg-Marquardt least-squares error algorithm. This algorithm has been 

implemented in software ‘RETC’ for straight-forward optimization of van Genuchten 

curve-fitting problems (van Genucthen, 1991).  MLE is another optimization procedure 

in hydrologic research.  MLE optimization has considerable advantages over simple least 

squares estimation methods for data with substantial uncertainty derived from 

measurement error and natural conditions, such as the manually collected θ(ψm) data for 

Shale Hills (Hollenbeck and Jensen, 1998). 

 

 Hollenbeck and Jensen (1998) did a series of water retention and outflow 

experiments, while giving details about optimizing van Genuchten parameters with MLE.  

The following are advantages of using MLE optimization: 

 

 Uncertainty in the data, obtained from the distribution of observed data, is used 

during the optimization process to define the parameter space of parameters 

being optimized (data distribution informs parameter estimation, not arbitrary 

weights) 

 With sufficiently wide bounds, parameters will converge upon a “global” 

minimum in the objective function.  This indicates that additional data samples 

will not alter the parameter estimate. 

 A Hessian matrix is computed from the sensitivity of the model to the 

parameters.  Inversion of the Hessian matrix is a diagnostic that the estimated 

parameter has converged upon a finite space 

 An parameter confidence region may be calculated from the inverse of the 

Hessian matrix as an ellipsoid: 
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 Where p is a parameter estimate, p* is the optimized parameter and CRO )(p  is 

the calculated parameter region (region) based upon the absolute difference of the change 

in the Objective function to the minimum of the Objective function.  This confidence 

region calculation works for models that are characteristically linear; however, 

Hollenbeck and Jensen (1998) found that the non-linear van Genuchten model will 

behave locally linear, meaning that the ellipsoid calculation still gives a good estimate of 

the confidence region.  The parameter samples in the calculated confidence region may 

be used as a prior probability distribution for a Bayesian model. 

 

 The retention data for all depths at 61 sites (232 total depths) across Shale Hills 

was fitted with a van Genuchten model using MLE optimization of θs, θr, α and n.  In all 

232 locations, the parameters converged and the Hessian matrices could be inverted.  

All sites were modeled using the same starting conditions and parameter bounds: 

 

1)  Density function:  Moisture was chosen to be predicted with the model, because well 

temporally-spanned volumetric moisture data has been empirically shown to be typically 

normally distributed (Fredlund and Xing, 1994).  Histograms were plotted for observed 

Volumetric Moisture Content at each location, and normal distribution functions were 

successfully fitted for each location.  The density function for the predicted Volumetric 

Moisture data  

 

2) Negative log-likelihood formula:  The formula used for Volumetric Moisture Content 

prediction is van Genuchten’s equation:  mn

m

rs
r
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3) MLE optimization method:  L-BFGS; a quasi-Newtonian method modified by Byrd 

et al (1995), which allows box contraints.  The constraints were used, as the α and n 

parameters can be extremely sensitive and must have constraints imposed for effective 

global convergence.  The bounds were chosen to be wide, but not too wide to make 

convergence impossible (see below).  θs must also be constrained to not be lower than the 

highest moisture value, which would cause model failure, and θr must not be higher than 
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the lowest moisture value for the same reason.  It is also does not make physical sense for 

θs to be lower than the highest moisture point and θr to be higher than the lowest moisture 

point.  Since it is quasi-Newtonian (or a variable metric algorithm), the method uses 

function values and gradients to “construct” a quantitative image of the surface to be 

optimized.      

 

4) Upper bounds:  

 

θs = 1.0 (indicating 100% space filled with moisture) 

θr = minimum observed moisture value 

α = 1 cm
-1

  

n = 10 

 

5) Lower bounds: 

 

θs = maximum observed moisture value  

θr = 0 

α = 0.001 cm
-1

  

n = 1.01 

 

6) Starting value (~standard initial values for silt loam in RETC): 

 

θs = maximum observed moisture value + 0.05 

θr = 0.05 

α = 0.02 cm
-1

  

n = 1.25 

 

These upper and lower bounds and initial values provided the best curve fits and allowed 

inversion of Hessian matrices for all depths.  Many other parameter ranges were tested 

with no convergence or non-invertable Hessian matrices for a number of depths.  

Therefore, the bounds and initial values indicated represent the most robust and effective 

starting conditions for MLE optimization of retention parameters for Shale Hills soils. 
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Appendix B:  Van Genuchten Soil Water Retention Parameter Maps 

  

 During the study of catchment-scale soil water retention characteristics at 

Shale Hills, maps of van Genuchten soil water retention parameters were created for the 

catchment at 10, 20, 40, 80 and 100 cm depth locations.  Bayesian regression kriging and 

Bayesian kriging with a constant trend were used for the interpolation of each soil water 

retention parameter across Shale Hills at each depth.  Catchment-wide characterization of 

soil water retention properties for different depths may be used to inform or refine 

hydrologic and ecologic models designed for processes controlled in part by soil water 

retention, such as catchment discharge or the intake of soil water by plants.       

 Bayesian kriging is advantageous in estimating data with a relatively weak 

spatial structure, since it uses the probability distribution of observed data to optimize 

spatial model parameters and takes into account spatial model parameters’ uncertainty 

(Diggle and Ribeiro, 2002).  Posterior probability distributions are available for each 

spatial model parameter after Bayesian kriging.  As α and n exhibited complicated spatial 

structure for individual depth locations, Bayesian kriging was well suited for estimating 

these parameters and θs, even though θs showed relatively strong spatial structure and was 

correlated with topographic indices at each depth location.  

 The following steps outline the fundamental process of Bayesian kriging: 

 

1)  Test for significant relationship between topographic variables and van Genuchten 

soil water retention parameter using a Stepwise Regression.  If significant relationships 

exist, use correlated topographic variables in regression kriging. If no significant 

relationships exist, use kriging with a constant trend 

2)   Utilize a Gaussian random field spatial model with a Matern covariance function to 

define spatial model parameters (further details in Section 2.6).  Prior estimates of spatial 

model parameters are obtained from using a maximum likelihood algorithm 

3)  Apply a validation diagnostic test to assess model performance with prior spatial 

parameters in predicting soil water retention parameters at observed locations. 
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4)  Apply a cross-validation test to determine any auto-correlation patterns in preliminary 

spatial model residuals and check for normality in prediction distribution (necessary 

conditions for isotropy) 

5)  Input preliminary spatial parameters obtained by maximum likelihood as priors into a 

Bayesian kriging procedure.  This procedure optimizes spatial parameters based upon 

their ability to predict values lying within the observation value’s probability distribution.  

The upper and lower bounds ascribed to the range of possible spatial parameter values are 

based upon uncertainty ascribed to each spatial parameter   

6)  Use Bayesian optimized spatial parameters (mean or mode of a parameter’s posterior 

probability distribution) to predict soil water retention parameters across the catchment 
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Figure B.1: Series of maps depicting the α soil 

water retention parameter across Shale Hills 

from locations across the catchment for 

multiple depths at 10, 20, 40, 80, and 100 cm.  

A Bayesian kriging procedure was used to 

interpolate α values.  Areas with depth to 

bedrock less than featured depth have been 

masked for each map.   
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Figure B.2: Series of maps depicting the n soil 

water retention parameter across Shale Hills 

from locations across the catchment for 

multiple depths at 10, 20, 40, 80, and 100 cm.  

A Bayesian kriging procedure was used to 

interpolate n values.  Areas with depth to 

bedrock less than featured depth have been 

masked for each map.   
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Figure B.3: Series of maps depicting the θs soil 

water retention parameter across Shale Hills 

from locations across the catchment for 

multiple depths at 10, 20, 40, 80, and 100 cm.  

A Bayesian kriging procedure was used to 

interpolate θs values.  Areas with depth to 

bedrock less than featured depth have been 

masked for each map.   
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Appendix C: Texture Maps 

 Texture content is a basic soil property, indicating the ratio of the mass of a soil 

textural class to the mass of soil within a given volume.  Soil texture classes analyzed at 

Shale Hills include clay, silt, sand, rock fragments and organic matter (OM).  Texture 

content data was obtained for A, B, and C horizons at 58 TDR site locations across the 

catchment.  As the thickness and boundaries for A, B, and C horizons are not consistent 

across sites at Shale Hills, texture content data was reorganized by recording texture 

values present at available 10, 20, 40, 80 and 100 cm depth locations for all 58 sites.   

 Total storage (g/cm
2
) of each texture class within the soil profile at all 58 sites 

was also calculated.  The following procedure yields total texture storage for a soil 

profile: 

1) Calculate texture storage for each horizon at a given site 

)(*)(*)( 3cm

g

dg

g cmHTTCHS   

where HS is horizon storage, TC is texture content at a horizon, HT is horizon thickness, 

and ρd is bulk density of the soil for a given site.  Bulk density data for each soil series 

was acquired from Lin, 2006.   

2) Calculate total texture storage for the soil profile at a given site  

CBA HSHSHSTS   

where TS is total texture storage for a site and HSA,B,C is horizon storage at available A, B 

or C horizons at a site.   

 With texture storage data and texture content data available at sites spanning 

the catchment, spatial statistics were applied to estimate texture content values at five 

depths and texture storage values across Shale Hills allowing the subsequent creation 

maps of texture data.  Regression kriging and kriging with a constant trend were used to 

interpolate texture values over the catchment, as kriging provides a smooth, but accurate, 

estimation of values across space.  If topographic variables were correlated with texture 

values, regression kriging was performed.  If no topographic variables were correlated 

with texture, then kriging with a constant trend was performed using maximum 

likelihood optimization.  All geostatistical analysis for texture data was performed in 

geoR (Ribeiro, and Diggle, 2001). 
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Figure C.1:  Maps of total rock fragment, clay, silt and sand storage generated from regression 

kriging analysis on respective total rock fragment, clay, silt and sand storage values at 58 sites 

across Shale Hills.  Although validation diagnostics showed R
2
 values > 0.830 for all spatial 

models, nugget and trend effects may cause estimated data values to be different from observed 

data at some site locations 
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Figure C.2: Series of maps depicting estimated 

clay content in Shale Hills from sample 

locations across the catchment for multiple 

depths at 10, 20, 40, 80, and 100 cm.  Areas 

with depth to bedrock less than featured depth 

have been masked for each map.   



 110 

Figure C.3: Series of maps depicting estimated 

sand content in Shale Hills from sample 

locations across the catchment for multiple 

depths at 10, 20, 40, 80, and 100 cm.  Areas 

with depth to bedrock less than featured depth 

have been masked for each map.   
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Appendix D:  Additional Tables and Correlation Matrices 

 Throughout the course of this research, additional information about soil water 

retention parameters was recorded.  The following are a collection of tables and 

correlation matrices representing this information.  

 

 

 

 

 

Table D.1: Summary of alpha values for each soil series and landform unit separated by depth location.  Letters 

beside the means indicate a significant difference of alpha values among depths within a landform unit or soil 

series according to a Tukey HSD test with a p-value < 0.05 
  

Alpha Values for different Depths within Soil Series

Depth (cm) SE Alpha Mean Sampel Size Depth (cm) SE Alpha Mean Sampel Size Depth (cm) SE Alpha Mean Sampel Size

10 0.202 0.055 a 24 10 0.261 0.048 ab 13 10 0.269 0.068 a 12

20 0.283 0.057 a 21 20 0.271 0.075 a 13 20 0.315 0.040 a 12

40 0.315 0.076 a 16 40 0.212 0.078 a 13 40 0.359 0.051 a 12

80 0.688 0.039 a 3 80 0.187 0.043 ab 9 80 0.363 0.123 a 12

100 0.071 0.213 a 2 100 0.818 0.014 b 4 100 0.274 0.043 a 10

Depth (cm) SE Alpha Mean Sampel Size Depth (cm) SE Alpha Mean Sampel Size

10 0.313 0.058 a 8 10 0.593 0.054 a 4

20 0.323 0.078 a 8 20 0.327 0.026 a 4

40 0.382 0.071 a 8 40 0.375 0.066 a 4

80 0.513 0.024 a 6 80 0.245 0.076 a 4

100 0.765 0.060 a 6 100 0.813 0.045 a 4

Alpha Values for different Depths within Landform Units

Depth (cm) SE Alpha Mean Sampel Size Depth (cm) SE Alpha Mean Sampel Size Depth (cm) SE Alpha Mean Sampel Size

10 0.385 0.063 a 6 10 0.231 0.051 a 19 10 0.203 0.059 a 22

20 0.606 0.027 a 6 20 0.282 0.072 a 16 20 0.225 0.059 a 22

40 0.275 0.241 a 3 40 0.320 0.061 a 14 40 0.203 0.073 a 22

80 NA 0.018 a 1 80 0.968 0.058 a 2 80 0.256 0.088 a 19

100 0.071 0.213 a 2 100 0.292 0.041 a 12

Depth (cm) SE Alpha Mean Sampel Size

10 0.246 0.055 a 14

20 0.269 0.053 a 14

40 0.290 0.054 a 14

80 0.308 0.036 a 12

100 0.510 0.037 a 12

Ernest

Weikert

Summit

Valley

Berks Rushtown

Blairton

SwaleHillslope
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Table D.2.(a-e): Correlation matrices of soil water retention parameters (cyan) with topography (green) and 

soil properties (orange) at 5 different depths.  A Spearman correlation was used to test significance.  Values 

in red are significant at p < 0.05, with the p-value in parantheses next to the correlation coefficient  

a 
Parameters 10 cm α n θs a ψe - b

α 1

n -0.44 (<0.001) 1

θs 0.50 (<0.001) 0 1

a -0.26 (0.040) 0.64 (<0.001) 0.24 1

ψe -0.91 (<0.001) 0.40 (0.001) -0.47 (<0.001) 0.42 (<0.001) 1

- b -0.28 (0.030) 0.68 (<0.001) -0.06 0.90 (<0.001) 0.43 (<0.001) 1

Slope Value 0.05 0.07 0.05 -0.1 -0.15 -0.03

TWI -0.21 0.06 0.06 0.19 0.24 0.1

Curvature 0.12 -0.14 -0.15 -0.09 -0.1 -0.04

Elevation -0.12 -0.09 -0.19 -0.16 0.07 -0.1

Upslope Area -0.11 -0.02 0.38 (0.003) 0.18 0.08 -0.01

Depth to Bedrock 0.09 0.12 0.52 (<0.001) 0.24 -0.05 0.04

Sand % 0.35 (0.033) -0.09 0.21 -0.1 -0.35 (0.035) -0.07

Silt % -0.39 (0.018) 0.1 -0.41 (0.011) -0.02 0.35 (0.033) 0.05

Clay % -0.04 0.06 0.26 0.33 (0.046) 0.09 0.18

Organic Matter % 0.19 -0.11 -0.05 0.16 -0.11 0.21

Rock Fragment % 0.18 -0.3 -0.27 -0.24 -0.13 -0.14

b 
Parameters 20 cm α n θs a ψe - b

α 1

n -0.48 (<0.001) 1

θs 0.13 -0.01 1

a -0.32 (0.015) 0.45 (<0.001) 0.54 (<0.001) 1

ψe -0.92 (<0.001) 0.34 (0.010) -0.22 0.34 (0.008) 1

- b -0.16 0.54 (<0.001) 0.09 0.79 (<0.001) 0.24 1

Slope Value 0.24 -0.2 0.04 -0.05 -0.24 -0.02

TWI -0.16 0.18 0.26 (0.050) 0.21 0.17 0.07

Curvature 0.02 -0.18 -0.32 (0.013) -0.25 -0.05 -0.11

Elevation -0.26 (0.050) 0.18 -0.32 (0.016) 0.03 0.29 (0.028) 0.14

Upslope Area -0.1 -0.04 0.59 (<0.001) 0.27 (0.040) 0.05 -0.06

Depth to Bedrock -0.14 0.11 0.65 (<0.001) 0.36 (0.005) 0.05 -0.02

Sand % -0.04 -0.09 -0.33 (0.046) -0.27 0.03 -0.18

Silt % 0.02 0.13 0.27 0.18 -0.05 0.1

Clay % -0.04 0.05 0.37 (0.023) 0.36 (0.027) 0.07 0.22

Organic Matter % 0 0.04 -0.23 -0.18 0.12 -0.1

Rock Fragment % 0.33 (0.044) -0.17 -0.69 (<0.001) -0.57 (<0.001) -0.23 -0.24

c 

Parameters 40 cm α n θs a ψe - b

α 1

n 0.1 1

θs -0.01 0 1

a -0.30 (0.031) 0.25 0.58 (<0.001) 1

ψe -0.87 (<0.001) -0.07 0 0.39 (0.003) 1

- b -0.14 0.42 (0.002) 0.2 0.86 (<0.001) 0.27 (0.050) 1

Slope Value 0.14 0 -0.1 -0.22 -0.32 (0.021) -0.19

TWI -0.35 (0.009) -0.01 0.15 0.19 0.48 (<0.001) 0.08

Curvature 0.28 (0.042) -0.17 -0.24 -0.31 (0.024) -0.27 (0.050) -0.25

Elevation 0.31 (0.023) 0.24 -0.12 0.08 -0.38 (0.005) 0.27 (0.050)

Upslope Area -0.24 -0.24 0.42 (0.002) 0.11 0.2 -0.14

Depth to Bedrock -0.17 -0.33 (0.017) 0.58 (<0.001) 0.31 (0.024) 0.04 0.04

Sand % -0.04 -0.17 -0.45 (0.009) -0.37 (0.035) -0.06 -0.23

Silt % -0.02 0.12 0.34 0.28 0.16 0.12

Clay % -0.05 0.12 0.47 (0.006) 0.47 (0.005) 0.06 0.41 (0.019)

Organic Matter % 0.05 0.26 -0.36 (0.036) -0.26 -0.06 -0.12

Rock Fragment % -0.05 0.03 -0.68 (<0.001) -0.47 (0.005) 0.17 -0.29
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d 

e 

Parameters 80 cm α n θs a ψe - b

α 1

n -0.33 1

θs 0.18 0.07 1

a 0.03 0.18 0.37 (0.032) 1

ψe -0.70 (<0.001) -0.07 -0.46 (0.006) 0.12 1

- b 0.18 0.24 0.02 0.83 (<0.001) 0.02 1

Slope Value 0.02 0.11 -0.29 -0.03 0.13 0.14

TWI 0.16 -0.06 0.35 (0.044) 0.17 -0.31 0.13

Curvature -0.44 (0.010) -0.04 -0.2 -0.17 0.40 (0.018) -0.19

Elevation 0.11 0.02 -0.27 0.11 0.2 0.25

Upslope Area 0.14 -0.25 0.27 0 -0.27 -0.03

Depth to Bedrock 0.34 (0.050) -0.06 0.31 -0.05 -0.38 (0.025) -0.04

Sand % 0.38 -0.11 -0.17 0.17 -0.13 0.32

Silt % -0.39 0.2 0.16 -0.32 0.04 -0.51 (0.038)

Clay % -0.33 -0.01 0.08 -0.08 0.15 -0.16

Organic Matter % -0.02 -0.08 0.09 0.36 0.02 0.44

Rock Fragment % 0.34 -0.15 -0.44 -0.33 0.14 -0.08

Parameters 100 cm α n θs a ψe - b

α 1

n -0.25 1

θs -0.05 -0.18 1

a -0.49 (0.012) 0.24 0.3 1

ψe -0.86 (<0.001) 0.18 -0.12 0.58 (0.002) 1

- b -0.21 0.48 (0.014) -0.03 0.80 (<0.001) 0.43 (0.030) 1

Slope Value -0.05 -0.09 -0.22 -0.23 0.09 -0.19

TWI 0.1 -0.09 0.13 0.33 -0.12 0.19

Curvature 0.19 0.02 -0.22 -0.66 (<0.001) -0.25 -0.39 (0.048)

Elevation 0.32 0.1 -0.50 (0.009) -0.01 -0.01 0.36

Upslope Area 0.19 -0.28 0.2 0.05 -0.22 -0.19

Depth to Bedrock -0.14 -0.07 0.13 0.3 0.11 0.11

Sand % 0 -0.29 -0.51 0.41 0.55 0.42

Silt % 0.27 0.26 0.5 -0.38 -0.75 (0.005) -0.29

Clay % -0.46 0.01 0.43 -0.27 -0.03 -0.52

Organic Matter % -0.37 -0.1 0.05 0.1 0.19 0.07

Rock Fragment % 0.14 -0.19 -0.72 (0.006) -0.32 0.14 -0.08


