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ABSTRACT

THE CAUSES AND CONSEQUENCES OF PARTICLE SIZE CHANGE IN FLUVIAL

SYSTEMS

Kimberly Louise Litwin Miller

Douglas J. Jerolmack

One of the most common features in fluvial environments is the systematic downstream de-

cline in grain size, which is usually attributed to either abrasion - the reduction in sediment

size due to attrition of mass - or selective sorting - the size segregation of grains due to their

relative transport mobility. Despite the ubiquity of this grain pattern and the extensive

research on both of these processes, there remains questions regarding the underlying prin-

ciples driving abrasion and sorting, as well as the relative contribution of these processes

to grain fining. Therefore, a mechanistic understanding of these processes is necessary to

observe their direct effect on pattern formation. This dissertation investigates the controls

and limits on abrasion and sorting through field studies and laboratory experiments. First,

using the well-defined boundary conditions of an alluvial fan, we examine how grain hiding

limits gravel sorting by tracking changes in the grain size distribution measured using a

novel image-based technique. Further downfan, we compare surface sand fractions mea-

sured in the field with those from the lab and show that the gravel-sand sorting profiles

are self-similar, suggesting generality in their development. In a second field study, using

detailed hand and image-based measurements characterizing size and shape of thousands of

grains throughout a watershed, we are able to directly observe the effectiveness of abrasion.

We then input these measurements into a simple numerical model to tease apart the con-

tribution of abrasion and sorting to downstream grains size and shape evolution. Finally,

we conduct laboratory experiments to isolate the effects of impact energy on abrasion rates

and use material properties of the grains to collapse mass loss curves between different

lithologies. We measure the grain size distribution of the products of abrasion to show

viii



that they are in agreement with expectations from brittle fracture theory. The results from

this work indicate that both sorting and abrasion are effective mechanisms in producing

downstream grain size patterns. Because grain size exerts a strong control on channel mor-

phology, understanding the controls on particle size change fosters a more complete picture

of the fluvial system.
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CHAPTER 1 : Introduction

Rivers are dynamic natural systems that display a variety of patterns on different spatial

scales. On the basin-wide scale, channels maintain a smooth concave longitudinal profile

through the interplay of tectonics, climate, erosion, and sediment supply (Sinha and Parker ,

1996; Sklar and Dietrich, 1998). On the reach scale, channel-form can organize into the

sinuous curves of a meandering river through flow instabilities caused by sediment transport

(Leopold et al., 1957; Parker , 1976). As the sediment load increases, the channel will adjust

its pattern to the many threads of a braided river (Leopold et al., 1957; Parker , 1976). On

this same scale, sediment can sort due to local variations in flow conditions to produce a

pattern of alternating bars (Schumm, 1985; Colombini et al., 1987). On the even smaller

channel-bed scale, sand and silt transported as both bedload and suspended load form the

intricate bedform patterns of ripples, dunes, and antidunes (Kennedy , 1969). All of these

patterns observed in fluvial systems share one common concept – the fundamental driving

force governing their formation is sediment transport. In turn, for given flow conditions

sediment transport is controlled by grain size, determining the modes and rates of transport

(van Rijn, 1984a,b). Therefore, particle size is perhaps the most important quantity for

understanding the form and patterns of river systems.

Sediment itself is observed to systematically reduce in size downstream forming ubiqui-

tous fining patterns. Downstream fining patterns are usually attributed to two dominant

processes: abrasion (Kodama, 1994a; Lewin and Brewer , 2002; Attal et al., 2006) and se-

lective sorting (Paola et al., 1992; Ferguson et al., 1996). Abrasion is the process by which

the diminution of grain size is caused by the chipping and wearing away of grains due to

energetic collisions (Wentworth, 1919; Kuenen, 1956; Sneed and Folk , 1958; Parker , 1991;

Kodama, 1994a; Lewin and Brewer , 2002). Whereas selective sorting is the process by which

grain size decreases downstream due to the preferential mobility of smaller grains as larger

grains are deposited out of the flow (Paola et al., 1992; Ferguson et al., 1996; Gasparini

et al., 1999). Although it is generally agreed that observed downstream fining patterns are
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produced in some degree by both abrasion and sorting, there has been considerable de-

bate regarding their relative importance (Parker , 1991; Paola et al., 1992; Kodama, 1994b;

Ferguson et al., 1996; Attal et al., 2006). It has been hypothesized that the difference in

the apparent importance of these processes could depend on channel environment, where

selective sorting is dominant in aggradational systems since it requires the deposition of sed-

iment (Shaw and Kellerhals, 1982; Dawson, 1988). Furthermore, lithology has been shown

to be a factor determining the proportion of each process to produce grain fining since

selective sorting tends to dominate in channels with resistant lithologies because the effects

of abrasion are diminished (Parker , 1991). However, because of the lack of understanding

of the mechanics governing abrasion and sorting, there is no way to quantify how different

factors, like channel environment and lithology, will influence their contribution to grain

fining. Currently, there is no systematic method to tease apart the effects of abrasion and

selective sorting on downstream grain size fining.

Sternberg (1875) was the first to quantitatively explain downstream fining by abrasion and

empirically described the diminution of grain size by the exponential function:

D = D0e
−αx (1.1)

where D is the grain size at downstream distance x, D0 is the initial grain size, and α is

the diminution coefficient. Although it is known that the amount of abrasion depends on

the energy delivered to the grain (Bitter , 1963), α values remain the most common way

to characterize abrasion rates, despite its lack of mechanistic foundation. However, some

progress has been made to link grain kinematics to abrasion. Research investigating the

abrasion from windblown sand showed that the volume removed from wooden fence posts

scales with the total impact energy of sand grains colliding with the surface (Anderson,

1986). Translating this idea to fluvial systems, impacts with the bed and other grains

during bedload transport provide the required energy for abrasion. In addition to impact

energy, lithology has been shown to exert a strong control on abrasion rates (Kuenen, 1956;
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Kodama, 1994a; Lewin and Brewer , 2002; Attal and Lave, 2009). Laboratory simulations of

grain-to-grain abrasion in a circular flume produced attrition rates spanning two orders of

magnitude depending on lithology (Attal and Lave, 2009). Moreover, strength and material

properties, like tensile strength and Young’s modulus, are known to have a large effect on

abrasion rates, but little is known about their exact contribution (Attal and Lave, 2009;

Wang et al., 2011). In addition, recent research has shown the effects of grain shape on

abrasion. A geometric theory derived by Domokos et al. (2014) models abrasion as a surface

curvature dependent process. This theory is confirmed through experiments looking at the

abrasion of initially square pebbles in a rotating drum which showed that protruding areas of

the pebble’s surface, marked by points high curvature, are quickly worn away first (Durian

et al., 2006; Domokos et al., 2014). Although previous work has shown that collision energy,

lithology, and grain shape govern abrasion, more work is needed to explicitly quantify their

effects so we may observe them in nature.

In a different manner, selective sorting produces grain fining through segregation of grain

sizes during transport. Paola et al. (1992) conducted flume experiments under constant

water discharge where a prograding wedge of gravel exhibited strong sorting patterns, in-

dicating that transport and deposition of poorly sorted or bimodal sediment is all that is

required to produce sorting patterns. Furthermore, fieldwork completed by Ferguson et al.

(1996), tracking sediment size and flux along a river, suggested that grain size fining by

selective sorting is caused by the channel maintaining near uniform transport rates as the

channel slope decreases downstream. Both of these studies highlight selective transport as

an effective process in the creation of downstream fining patterns due to the relative mobil-

ity of smaller grains. Although intuitive that smaller grains are easier to transport, this is

not always the case for heterogeneous grain size mixtures, where hiding and protruding of

grains on the bed can alter their mobility (Parker , 1990). For instance, a small grain sitting

in a pocket of larger grains will require a higher stress to be transported than that same

grain sitting on a bed of similar sized grains. Due to these “hiding effects”, a range of grain

sizes can be transported under the same flow conditions; this phenomenon is referred to
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as equal mobility (Parker and Klingeman, 1982; Wiberg and Smith, 1987). Equal mobility

can obscure the ability of the channel to sort sediment(Gasparini et al., 1999), however,

patchiness in bed material, seen in local variations of mean grain size, can suspend its ef-

fects causing selective deposition of grains (Paola and Seal , 1995). Therefore, the exact

interactions between transport and relative grain size in producing sorting patterns is not

fully understood.

Regardless of whether abrasion or selective sorting is the cause of downstream fining, grain

size patterns have major consequences on channel morphology (Leopold , 1992; Dade and

Friend , 1998). On the basin-wide scale, Yatsu (1955) showed that changes in channel slope

along 9 rivers in Japan correlated with a change in median grain size. Furthermore, nu-

merical modeling of channel evolution indicates that long profile concavity increases with

grain size because of the interdependent relationship between channel gradient and sediment

mobility (Gasparini et al., 2004). On the local channel scale, gravel-bedded rivers at equi-

librium adjust their channel geometry to transport the median grain size (Parker , 1978).

Knowing how grain size patterns are formed will shed light on how adjustment timescales

between grain size trends, channel geometry, and slope vary so we may better understand

the linkages between them.

This dissertation examines several aspects of downstream particle size change: the mutual

influence of different grain sizes on sorting patterns, the geometric evolution of pebble shape

due to abrasion, the scaling between collisional energy and attrition rates, and the charac-

terization of the products of abrasion. Through field studies and laboratory investigations,

this work aims to describe the interplay between grain size and channel morphology by

investigating sediment interactions during transport.

Chapter 2 explores grain size patterns produced through sorting processes. From basic

sediment transport equations, Fedele and Paola (2007) derived Sternberg’s Law (eq. (1.1))

resulting from gravel selective sorting. They showed that the mean and standard deviation

of the grain size distribution decrease exponentially downstream at the same rate arising in
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a constant value of the coefficient of variation, thus suggesting self-similar sorting profiles.

However, there is some finite length over which the channel adjusts to this limit of a constant

coefficient of variation. In this chapter, we investigate what determines this limit of sorting

by tracking the degree of equal mobility of grains. Further downstream, we examine how

sand sorts from gravel to form an abrupt feature referred to as the gravel-sand transition,

marked by a rapid decrease in median grain size and channel slope. A two-fraction transport

model has been proposed to produce this feature due to the effect sand and gravel have

on each others relative mobility (Wilcock and Kenworthy , 2002). We compare bed surface

sand fraction profiles from different field sites and a small-scale laboratory experiment to

determine the generality of this sorting feature.

Chapter 3 examines the relative importance of abrasion versus size selective sorting within

an entire watershed by quantifying downstream changes in grain size and shape. The

geometric theory of abrasion developed by Domokos et al. (2014) results in two distinct

phases of abrasion. In the first phase, abrasion causes an initially blocky pebble to evolve

to the shape of an inscribed ellipsoid, with no change in axis lengths, as the regions of high

curvature are worn away. In the second phase, the fully convex ellipsoid evolves to a sphere

as axis lengths are reduced. Through the use of several shape descriptors, calculated from

both hand measurements and image-based techniques, we seek verification of this two-phase

abrasion theory in a natural setting. Then, we determine the contribution of both abrasion

and sorting to pebble size and shape evolution by using measured grain data from the

field in a numerical model which couples the geometric abrasion theory with basic selective

sorting rules.

Chapter 4 investigates the scaling of impact energy on abrasion rates of different lithologies

of grains. Previous laboratory experiments on abrasion track mass loss with time in a tum-

bling mill or circular flume in order to determine diminution coefficients (α) from eq. (1.1)

(Wentworth, 1919; Krumbein, 1941; Kodama, 1994a; Lewin and Brewer , 2002). However,

extrapolating α values from the lab to the field requires the assumption that duration of
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experiment is a proxy for distance along a river. This assumption is not always the case,

as abrasion can occur while grains are immobile on the bed by collisions of transported

grains (Schumm and Stevens, 1973; Brewer et al., 1992). Unlike previous experiments, in

this chapter, we isolate the impact energy by monitoring the abrasion of well-controlled

binary collisions of grains. Furthermore, we measure the strength and material properties

of the grains to quantitatively determine their effects on abrasion rates. Finally, we exam-

ine the fine particles produced during the abrasion process. Brittle fracture theory states

that the daughter products resulting from full fragmentation follows a Weibull distribution

(Brown and Wohletz , 1995; Kok , 2011). Although abrasion of river sediments is at much

lower energies than those required for full fragmentation, we hypothesize that brittle frac-

ture theory may apply to abrasion over some limited depth where the collision energy is

attenuated. To test this idea, we characterize the grains size distribution of the daughter

products of abrasion to see if they display the same functional form expected from brittle

fracture theory.

The unifying theme of this dissertation is that grain size is the predominant factor governing

channel morphology and therefore a deeper understanding of the mechanisms controlling

grain size is necessary. Grain size patterns provide evidence of the interplay between fluid

mechanics, granular physics, and material science. By incorporating theories and techniques

from these fields, we develop a more complete comprehension of grain size patterns, which

elucidates studies of past, present, and future fluvial systems. For example, a mechanistic

understanding of grains size will yield insight into past fluvial conditions when these patterns

are preserved in the stratigraphic record (Rice, 1999). Furthermore, with regards to future

river systems, an understanding of the controls on downstream grain size patterns provides

guidance for river restoration projects which have implications for stream ecology, such as

spawning habitat for fish populations (Lisle, 1989; Kondolf and Wolman, 1993). Overall,

this work provides the framework for starting to view grain size change in a more mechanistic

manner.
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CHAPTER 2 : Generalized Sorting Profile of Alluvial Fans

Chapter submitted for publication as:

Litwin Miller, K., M. E. Reitz, and D. J. Jerolmack (2014),Generalized sorting profile of

alluvial fans, Geophysical Research Letters (in review).

Abstract:

Alluvial rivers often exhibit self-similar gravel size distributions and abrupt gravel-sand

transitions. Experiments suggest these sorting patterns are established rapidly, but how –

and how fast – this convergence occurs in the field is unknown. We examine the establish-

ment of downstream sorting patterns in a km-scale alluvial fan. The sharp transition from

canyon to unconfined, channelized fan provides a well-defined boundary condition. The

channel changes from deep and entrenched at the fan apex to shallow and depositional over

a short distance, exhibiting non-equilibrium behavior. The resulting gravel fining profile is

not self-similar; the particle size distribution narrows until approximate equal mobility is

achieved. Downfan, the gravel-sand transition appears to exhibit a self-similar form; field

and laboratory data collapse when downstream distance is normalized by the location of the

transition. Results suggest a generalized sorting profile for alluvial fans as a consequence of

the threshold of motion and non-equilibrium channels.
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2.1. Introduction and Background

Downstream changes in particle size exert a strong control on sediment transport and

alluvial channel geometry. The observed pattern of an exponential decline in downstream

particle size is so ubiquitous that it has been elevated to a law (Sternberg , 1875; Rice,

1999; Pizzuto, 1995; Domokos and Gibbons, 2013). Fedele and Paola (2007) demonstrated

that “Sternberg’s Law” may arise from size-selective deposition, and revealed an even more

remarkable finding. For the case of gravel, a simplification of the transport equations

predicts that the standard deviation of the grain size distribution (GSD), σ, decays at a

similar exponential rate to the mean, D̄; the coefficient of variation Cv = σ/D̄ thus remains

approximately constant (Fedele and Paola, 2007). This pattern is borne out in data from

natural rivers, and flume experiments of a prograding sediment wedge. The latter suggest

that the sorting profile is established early on in river profile evolution, and then essentially

“stretches” as the river continues to prograde. As a consequence, sorting profiles at different

stages of river evolution are identical when downstream distance (x) is normalized by the

length of the gravel reach (Lg), i.e., x∗ = x/Lg. Determining whether this self-similar

sorting profile is as ubiquitous as Sternberg’s Law requires substantially more data. A

natural question that arises from the Fedele and Paola (2007) results is: what determines

the limit to sorting in bed load (gravel) streams? A reasonable hypothesis is that size-

selective transport narrows the GSD until particles are approximately equally mobile, in

terms of their threshold entrainment stress (cf. Parker and Klingeman, 1982; Wiberg and

Smith, 1987), and that the constant Cv is a reflection of this state. This hypothesis has not

been tested, and the equilibrium Fedele and Paola (2007) theory cannot be used to predict

how – or how rapidly – an arbitrarily heterogeneous initial GSD would converge toward a

constant value.

Another common grain-size pattern in rivers is the gravel-sand transition. This transition is

remarkable for several reasons: (1) it implies that river sediments have a bimodal distribu-

tion, regardless of lithology or geologic setting (Smith and Ferguson, 1995; Ferguson, 2003;
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Knighton, 1999); (2) transport conditions change dramatically, from a near-threshold bed

load channel in the gravel reach to a suspension-dominated channel in the sandy portion

(Paola et al., 1992; Parker and Cui , 1998; Fedele and Paola, 2007); and (3) the transition

takes place over a distance that is small compared to the upstream gravel reach (Fergu-

son, 2003; Frings, 2011). Despite the relative abruptness of the gravel-sand transition, it

is not infinitesimal; it is marked by a systematic downstream increase in the surface-sand

fraction (Fs) from 0 to 1, and a concomitant decrease in slope. There are surprisingly few

field data documenting grain size and channel geometry patterns across the gravel-sand

transition, and a complete theory is lacking. It has been suggested that the transition is

governed partly by the mutual influence of sand and gravel on the threshold entrainment

stress of each population (Wilcock and Kenworthy , 2002; Ferguson, 2003). Wilcock and

Kenworthy (2002) used laboratory data to demonstrate that an increase in sand fraction

causes a decrease in the threshold Shields stress (τ∗c) for both gravel and sand; this effect

is encapsulated in the empirical formula:

τ∗cg = τ∗cg1 + (τ∗cg0 − τ∗cg1) exp−14Fs (2.1)

where τ∗cg1 and τ∗cg0 is the critical Shields stress for gravel with Fs = 1 and 0, respectively.

The decrease in Shields stress for the sand fraction is greater than that of gravel, causing a

segregation of the two size fractions. Ferguson (2003) demonstrated that inclusion of this

effect in a numerical model for river-profile evolution produced realistic-looking gravel-sand

transitions, but model results have not been compared to field data. At present there is no

analytic theory for sorting across the gravel-sand transition to complement the self-similar

sorting theory for gravel.

Alluvial fans are useful systems to study in order to address the questions raised above.

Many fans are strongly depositional and short in length, enhancing the dominance of size-

selective deposition and suppressing the confounding effects of abrasion (cf. Hooke, 1967;

Blair and McPherson, 1994; Parker et al., 1998). The apex of an alluvial fan presents
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a well-defined upstream boundary condition. Because fans are typically fed by bedrock

canyons – which lack deposition – they receive an initially unsorted, heterogeneous GSD.

Stock et al. (2008) documented rapid deposition and downstream fining, and an associated

rapid decrease in channel hydraulic radius, on several alluvial fans. Their observed grain-size

trends appear to be qualitatively similar to those seen in much larger rivers, motivating us

to quantify these patterns and seek generality. In this study we examine downstream trends

in grain size and channel geometry on a kilometer-scale alluvial fan, and make comparisons

to previously published meter-scale laboratory experiments. We find that as the channel

adjusts from deep and entrenched to shallow and depositional, the gravel fining is not self-

similar, and we demonstrate that gravel sorts toward an apparent limit associated with

equal mobility. Data suggest that sorting across the gravel-sand transition does indeed

exhibit a self-similar form, which should help to guide further theoretical development.

2.2. Methods

The field site for this research is the Dog Canyon alluvial fan (Fig. 2.1a), at Oliver Lee State

Park near Alamogordo, New Mexico. Dog Canyon drains the Sacramento Mountain range,

which is composed primarily of Pre-Cambrian and Permian limestone and makes up the

eastern boundary of the Tularosa Basin (Herrick , 1900). At its exit from the mountains the

channel crosses a normal fault, which marks the transition to the alluvial fan, and continues

as an alluvial channel approximately 12 m wide and 1.2 m deep at the apex of the fan, defined

as x = 0 km. A secondary channel splits from the main channel at approximately 0.7 km

from the fan apex (Fig. 2.1a). Channel substrate is predominantly rounded gravel for the

first 1.7 km, and grain size and channel depth decrease systematically over this distance

(Fig. 2.1). The fan then transitions over several hundred meters to a sandy bed, at which

point alluvial channels become difficult to distinguish. The short distance of the gravel reach

precludes abrasion as a contributor to downstream fining patterns, and images confirm that

there is no significant shape change for gravels moving down fan. Head-cutting gullies exist

in the sandy portion of the fan and have incised up to approximately the beginning of the

10



gravel-sand transition, ∼ 1.7 km from the fan apex. They are distinguishable on the ground

by their deep and narrow geometry; their interference with the more subtle alluvial channels

at the gravel-sand transition make it impossible to characterize channel geometry on the

sand-influenced portion of the fan.

We characterized channel geometry, particle size, and elevation along the fan. The long

profile of the main channel of the alluvial fan, as well as the adjacent floodplain (i.e.,

fan surface), was measured using a Trimble GeoXH differential global positioning system

(DGPS) with an associated lateral error of 0.1 m and a vertical error of up to 1 m. The

DGPS data were smoothed using a 100 m window moving average; the resulting profile is

seen in Fig. 2.1a. The slope (S) above the gravel-sand transition may be approximated as

constant and equal to S = 0.04, and rapidly decreases over a distance of 900 m to a lower

constant value of S = 0.01 for the sand-bedded fan (Fig. 2.1a). To allow comparison to

sorting models and other river systems, downstream distance is normalized by the length

of the gravel reach. We define this length as the distance from the fan apex to the gravel-

sand transition, x∗ = x/Lg, where Lg is determined as the location where channel slope

has completed adjustment (i.e., where S = 0.01; see Fig. 2.1a) and the gravel fraction is

zero. An image-based autocorrelation technique (“Cobble Cam”) (Rubin, 2004; Warrick

et al., 2009) was used to measure the mean grain size (D̄) at 34 cross sections of the

main channel spaced at intervals of approximately 125 m downstream. This technique

also provides a measure of the variation in particle size akin to – but smaller than – the

standard deviation, σ (see Warrick et al., 2009). At each cross section, ∼ 10 side-by-side

images were taken to sample the entire width of the channel; values for D̄ and variation

from all images were averaged to produce representative values for each cross section. In

order to produce estimates for σ at each cross section from images, each variation parameter

was multiplied by a constant factor (1.5) that provided the overall best match with values

for σ determined from pebble count data (see below). We also measured the surface sand

fraction (Fs) of the bed in each image; due to a naturally occurring grain size gap, there was

a clear visible distinction between sand (whose particle size could not be determined from
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images) and gravel (Fig. 2.1b). Additionally, pebble counts (n = 100 grains) (Wolman,

1954) were completed at 21 cross sections of the main channel of the alluvial fan, and were

used to validate the image method and to examine the full GSD. Finally, channel geometry

was measured at 18 locations over the first approximate 1.4 km of the fan from its apex.

Locations were selected at approximately constant intervals while preferentially choosing

sites with well-defined channel banks. Locations for each cross-section site were recorded

using the DGPS, and a laser range-finder with compass attachment was used to survey the

channel geometry.

2.3. Sorting and Channel Patterns over the Gravel Reach

Mean grain size (> 2 mm) (D̄), measured by both images and pebble counts, shows a distinct

downstream fining pattern (Fig. 2.2a). While trends from the two methods generally agree,

pebble count data show larger variability. Inspection of the pebble count data reveals

that the mean grain size did not converge to a stable value at 100 counts. Since the image

analysis method averages over thousands of grains, we believe these results are more reliable.

The standard deviation of the grain size (σ) likewise shows a downstream decline for both

methods (Fig. 2.2b), with the image technique exhibiting a smoother trend. In contrast

to the findings of Fedele and Paola (2007), Cv is not a constant value. The coefficient of

variation instead declines steadily downstream to x∗ = 0.5, then begins to fluctuate. In

other words, over the first half of the gravel reach, the σ of the GSD decreases faster than

the D̄, indicating a transient downstream sorting adjustment. Upstream of the location

x∗ = 0.5, sand makes up only a small portion of the substrate (Fs < 0.1), while Fs begins

to rapidly increase downstream of this location (Fig. 2.3a). We suspect that the gravel

sorting pattern becomes disrupted by the presence of sand, because local patchiness of sand

and gravel will create strong spatial variations in the threshold of motion (e.g. Paola and

Seal , 1995). Thus, we interpret the decrease in Cv up to x∗ = 0.5 as the consequence of

size-selective sorting of gravel by bed load transport in the (relative) absence of sand, and

the highly variable Cv downstream of this location as reflecting the absence of size-selective
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gravel sorting due to the presence of sand.

What physical meaning can be derived from the trend in Cv over the gravel portion of the

fan? Our hypothesis is that gravels sort to a limiting GSD that reflects a state of equal

mobility. To test this idea, we calculate the ratio of the threshold shear stress of the grain

size one standard deviation above the mean (τ c
D̄+σ

) to that of the grain size one standard

deviation below the mean (τ c
D̄−σ), using the hiding function from Wilcock and Crowe (2003):

τi
τ50

=
( Di

D50

)b
(2.2)

where

b =
0.67

1 + exp(1.5− Di
Dsm

)
(2.3)

and where τi and τ50 are the critical shear stresses required to transport the ith and 50th

percentile grain size Di and D50, respectively, and Dsm is the surface mean grain size. Our

image technique only measures the mean, not the median, so we use D̄ for both D50 and

Dsm. Pebble count data indicate that the mean and median are typically within 20% of

each other. The computed ratio of the threshold stresses, D̄+σ to D̄−σ, decreases towards

unity from the apex of the fan to the location x∗ = 0.5 (Fig. 2.2d). We note that similar

results are obtained using threshold stress values computed using the method of Wiberg

and Smith (1987). These calculations support the notion that gravels on the Dog Canyon

fan sort toward a limit of equal mobility, at which point all gravel sizes have comparable

entrainment stresses.

2.4. Gravel Sand Transition

As the gravel reaches its sorting limit on Dog Canyon fan, the channel starts to rapidly

transition from gravel to sand bedded. The pattern of downstream increase in Fs observed

at Dog Canyon (Fig. 2.3a) is similar to the numerical results of Ferguson (2003) for model

runs that included the Wilcock and Kenworthy (2002) two-fraction threshold (eq. (2.1))

[cf. their Fig. 3 ]. We would like to understand whether this gravel-sand transition pattern
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is general, and therefore we seek self-similarity in the sand fraction profile. Dog Canyon

results are compared to data from two other systems at very different scales. The first is

from laboratory experiments of Reitz and Jerolmack (2012) with a length scale Lg ∼ 10−3

km, which featured a bi-modal mixture of granite chips and acrylic sand that scales to

a cobble-sand mixture in the field; details of the experiment can be found in Reitz and

Jerolmack (2012). The second is the Rhine River, with a length scale Lg ∼ 102 km (Frings,

2011). For all systems, the gravel-sand transition exhibits a very similar pattern of increasing

Fs when distance is normalized by the length of the upstream gravel reach. Downstream

changes in Fs appear to follow a sigmoidal curve (Fig. 2.3a). On closer inspection, however,

we see that the curve is not symmetric; it may be better approximated as two segments.

In the first segment, sand fraction increases slowly and perhaps linearly from Fs = 0 at

x∗ = 0 to Fs ≈ 0.2 at x∗ ≈ 0.6. In the second segment there is a rapid and qualitatively

different pattern of increasing Fs toward a value of 1. This proposed separation occurs at

a surface sand fraction of 20%, which coincides with the point that a river bed transitions

from a gravel-supported to a sand-supported matrix (Wilcock and Kenworthy , 2002). As a

further test of self-similarity, we plot the length of the gravel-sand transition (as determined

from slope changes in river profiles), Lt, against Lg for a large number of rivers using the

compilation of (Ferguson, 2003) (Fig. 2.3b). The data are best-fit by a power law, which

is nearly linear with an exponent of 0.92, implying that Lt is a constant fraction of Lg –

approximately 12%. Taken together, the collection of data over different scales indicates

that the gravel-sand transition is indeed self-similar.

2.5. Channel Geometry

At its exit from the canyon, the Dog Canyon channel is entrenched relative to the fan

surface; the channel at the apex of the fan is relatively deep and narrow. At x = 550 m, the

channel and fan-surface profiles converge. Over this region, the measured channel depth (h)

rapidly decreases and channel geometry shifts from being single-threaded with well-defined

banks, to a braided channel with indistinguishable boundaries (Fig. 2.4b). For a self-
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formed gravel river at equilibrium, theory predicts that the channel is adjusted such that

the Shields stress at bankfull is slightly in excess of the threshold value for the mean grain

size (Parker , 1978); the average value from field observations is τ∗ = 1.4τ∗c (Paola et al.,

1992; Dade and Friend , 1998; Parker and Cui , 1998; Parker et al., 2007). There is reason

to believe, however, that this prediction should not hold on the Dog Canyon fan or alluvial

fans generally. In laboratory alluvial fan experiments, Reitz and Jerolmack (2012) observed

an avulsion (channel switching) cycle of channel cutting, progradation, and backfilling; for

most of the avulsion cycle, the channel was entrenched at the fan apex and transitioned

downstream to a shallower, depositional form. This pattern is common on alluvial fans, and

is what we observe at Dog Canyon. Reitz and Jerolmack (2012) proposed that alluvial fan

channels are in a perennial state of disequilibrium due to the progradation-avulsion cycle,

and that channelization in this setting is a transient phenomenon. To understand controls

on transport and channel organization on the Dog Canyon fan, we estimated the bankfull

Shields stress profile, τ∗(x) = (h(x)S)/(RD̄(x)), from best-fit equations to downstream

trends in h and D̄. We compare the calculated bankfull Shields stress with the expected

threshold value using the two-fraction threshold eq. (2.1) with a best fit linear relation

for Fs over the gravel region of the fan; we computed τ∗cg0 = 0.1082 by applying the

slope correction from (Mueller et al., 2005), and assume a lower value of τ∗cg1 = 0.01 in

accordance with Wilcock and Kenworthy (2002) (Fig. 2.4b). Both Shields stress and critical

Shields stress decrease exponentially downstream at approximately the same rate, making

the ratio almost constant; however, the computed value τ∗ ≈ 6τ∗c implies transport that is

far above threshold. Moreover, ”bankfull” at the entrenched fan apex may not be related

to any formative flood, as the transient channel may be incising. Therefore, it is not clear

that the estimated Shields stress profile is representative of any actual transport conditions.

Based on the entrenched channel head and its transition to a shallow depositional channel

downstream, we infer that the Dog Canyon fan is not in equilibrium, and likely exhibits

strongly non-uniform transport conditions downstream. It is possible that this transition

drives the transient response in grain size sorting along the gravel-dominated portion of the
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fan.

2.6. Discussion and Conclusions

Field and laboratory data indicate that sand deposits gradually downstream in a gravel-

bed river, until it reaches a critical fraction (Fs ≈ 0.2) that is sufficient to disrupt the

gravel matrix. Three things happen at this point on the Dog Canyon fan: (1) the surface

sand fraction increases rapidly; (2) channels quickly decay in depth and disappear; and (3)

channel slope begins to decrease. We separate the discussion, therefore, into distinct prob-

lems associated with distinct patterns: sorting and channel adjustment in gravel-dominated

upstream segment of the fan, and sorting across the gravel-sand transition.

Gravel sorting at Dog Canyon produces a downstream decrease in Cv, in apparent contra-

diction to the prediction and empirical findings of Fedele and Paola (2007). However, this

may not be wholly unexpected. Downstream channel geometry indicates non-equilibrium

and strongly nonuniform conditions, likely a result of transient channel adjustments due to

the cycle of progradation and avulsion. The Fedele and Paola (2007) model does not treat

mixed gravel-sand transport, it assumes a constant Shields stress, and assumes equilibrium

channel conditions. Transient channel dynamics may be causally related to the anomalous

gravel-fining trend on Dog Canyon, and this may be a common feature of alluvial fans gen-

erally, but more work is needed. It is intriguing that gravel sorting appears to approach a

condition of equal mobility (Fig. 2.2d), at which point sand deposition increases rapidly and

the gravel sorting pattern is destroyed. There may be a limiting Cv that reflects the limiting

hydraulic sensitivity of size-selective entrainment (cf. Fedele and Paola, 2007). Jerolmack

et al. (2011) observed saturation of sorting effects after several kilometers in an aeolian

dune field, at the point where the GSD achieved an empirical limit related to modes of

grain transport. Future research should explicitly explore and test this idea.

Considering the gravel-sand transition, there is evidence that sorting across the transition

follows a self-similar form (Fig. 2.3). The collapse of data from systems spanning 6 orders
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of magnitude in spatial scale suggests that the dynamics controlling sand deposition are

insensitive to local details of hydraulics, topography and particle size. What is common

to all systems is a bimodal GSD, in which the coarse particles deposit first to form a

steeper portion of the channel while the finer particles travel in suspension. It appears that

the gravel-sand sorting profile emerges rapidly, and then is stretched as rivers lengthen –

analogous to proposed self-similar gravel sorting patterns of Fedele and Paola (2007). While

an analytical model for the gravel-sand transition is currently unavailable, data suggest that

there may be a general similarity solution.

Three concepts - size-selective sorting, equal mobility, and transient channel dynamics

(Parker and Klingeman, 1982; Wiberg and Smith, 1987; Fedele and Paola, 2007; Reitz

and Jerolmack , 2012) - have been used to explain the first-order trends in grain size and

channel geometry observed on the Dog Canyon fan. Given the generality of these concepts,

our conclusions may be critically tested by examining grain-size trends on other alluvial

fans.
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Figure 2.1: Dog Canyon alluvial fan. a) Channel profile from smoothed DGPS data. The
upper gravel reach has an approximately constant slope of 0.04 which rapidly decreases
to 0.01 after the gravel-sand transition. At x∗ = 0.3 a secondary channel splits from the
main channel. At x∗ = 0.63 the gravel-sand transition begins and headcutting gullies
from downstream start to affect channel geometry. Inset shows aerial image of fan with
the entire fan outlined in black, main channel denoted by the orange line, and secondary
channel denoted by the yellow line. b) Images of the channel bed illustrating increase in
surface sand content.
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Figure 2.2: Gravel grain-size sorting. Dashed line denotes location where channel bed
transitions from gravel to sand matrix. a) Grain size profile from both pebble count and
image data shows a decrease downstream. b) Standard deviation of grain size decreases
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average channel depths downstream. Where the channel is not entrenched, the depth is
measured as twice the standard deviation of the cross-stream elevation profile. Inset shows
the difference in channel geometry in the two regions as the channel transitions from well-
defined banks to braided. c) Plot showing estimated bankfull Shields stress (red) and
calculated threshold Shields stress.
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CHAPTER 3 : Quantifying the Significance of Abrasion and Selective Transport on

Downstream Pebble Evolution

Chapter submitted for publication as:

Litwin Miller, K., T. Szabó, D. J. Jerolmack, and G. Domokos (2014), Quantifying the

significance of abrasion and selective transport on downstream pebble evolution, Journal

Geophysical Research: Earth Surface (in review).

Abstract:

It is well known that pebble diameter systematically decreases downstream in rivers. The

contribution of abrasion is uncertain, in part because: (1) diameter is insufficient to char-

acterize pebble mass loss due to abrasion; and (2) abrasion rates measured in laboratory

experiments cannot be easily extrapolated to the field. A recent geometric theory describes

abrasion as a curvature-dependent process that produces a two-phase evolution: in Phase

I, initially blocky pebbles round to smooth, convex shapes with little reduction in axis di-

mensions; then, in Phase II, smooth, convex pebbles slowly reduce their axis dimensions.

Here we provide the first confirmation that two-phase abrasion occurs in a natural setting,

by examining downstream evolution of shape and size of thousands of pebbles over ∼ 10

km in a tropical montane stream. The geometric theory is verified in this river system

using a variety of manual and image-based shape parameters, providing a generalizable

method for quantifying the significance of abrasion. Phase I occurs over ∼ 2 kilometers, in

upstream bedrock reaches where abrasion is dominant and sediment storage is limited. In

downstream alluvial reaches, where Phase II occurs, we observe the expected exponential

decline in pebble diameter. Using a discretized abrasion model (the so called “box equa-

tions) with deposition, we deduce that abrasion removes more than 1/3 of the mass of a

pebble, but that size-selective sorting dominates downstream changes in pebble diameter.

Overall, abrasion is the dominant process in the downstream diminution of pebble mass

(but not diameter) in the studied river, with important implications for pebble mobility

and the production of fine sediments.
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3.1. Introduction

The ubiquitous pattern of rounded river rocks has long been known to result from the

smoothing action of abrasion, due to grain-grain collisions during bed load transport (Went-

worth, 1919; Kuenen, 1956; Sneed and Folk , 1958; Parker , 1991; Kodama, 1994a; Lewin

and Brewer , 2002). The transformation of initially blocky and angular rocks – typical of

upstream reaches of rivers – to ellipsoidal pebbles downstream implies that a significant

fraction of pebble mass is lost due to abrasion (Domokos et al., 2009; Szabo et al., 2013).

The daughter products of abrasion are not infinitesimal; sand and silt produced from peb-

ble collisions may be an important contributor to downstream floodplains, estuaries and

beaches, and may help to maintain the observed bimodality of grain size distributions of

riverbeds (Jerolmack and Brzinski , 2010, and references therein). Although it has long been

recognized that shape is an important indicator of the degree of abrasion of a sedimentary

particle (so-called “maturity”), surprisingly few studies have quantified the downstream

evolution of pebble shape in rivers (Sneed and Folk , 1958; Bradley et al., 1972; Adams,

1979; Mikos, 1995; Szabo et al., 2013).

The most commonly measured quantity in field studies of river rocks is the middle axis

length, typically called “diameter”, which is used as a proxy descriptor of particle “size”

(Kodama, 1994b; Lewin and Brewer , 2002; Attal et al., 2006). A near-universal trend

observed in alluvial rivers, often referred to as “Sternberg’s Law” (1875), is that pebble

diameter (D) decreases exponentially with distance downstream (x):

D(x) = D0e
−γx, (3.1)

whereD0 is initial pebble diameter at the upstream alluvial boundary and γ is an empirically-

determined parameter. For decades, researchers have attempted to rationalize this relation

(eq. (3.1)) from theory and laboratory experiments (Krumbein, 1941; Adams, 1978; Ko-

dama, 1994a; Mikos, 1995; Lewin and Brewer , 2002; Attal and Lave, 2009). Although
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Sternberg originally proposed that this downstream decline in particle diameter was due to

abrasion, there is a consensus now that the dominant effect is size-selective transport, in

which larger grains are preferentially deposited and smaller particles travel farther down-

stream (Paola et al., 1992; Seal and Paola, 1995; Paola and Seal , 1995; Ferguson et al.,

1996; Gasparini et al., 1999). In particular, Fedele and Paola (2007) derived a simplified

theory in which eq. (3.1) arises as a consequence of size-selective sorting. What role, if any

then, does abrasion play in the downstream fining of pebbles?

Many researchers have used laboratory experiments to quantify abrasion rate as a result of

collisions among pebbles during bed load transport, typically through employing tumbling

mills (Wentworth, 1919; Krumbein, 1941; Kodama, 1994a; Lewin and Brewer , 2002) or

circular flumes (Lewin and Brewer , 2002; Attal et al., 2006). Although measured rates vary

greatly depending on the type of apparatus employed and also pebble lithology, a unifying

conclusion has been that abrasion rates are generally too slow to account for observed fining

trends (described by eq. (3.1)) in rivers (Adams, 1978; Hoey and Bluck , 1999; Morris and

Williams, 1999). This conclusion is not without objection, however, mainly on two fronts:

(1) most experiments do not simulate the high-energy collisions typical of steep mountain

streams, and those that do produce results more consistent with expectations from the

field (Kodama, 1994b; Lewin and Brewer , 2002; Attal and Lave, 2009); and (2) experiments

usually measure mass loss while field studies typically measure changes in diameter, but the

two can only be directly compared if the exact shape of the pebbles are known, which they

are not (Kodama, 1994a; Lewin and Brewer , 2002; Domokos et al., 2014). Even if suitable

collision energies can be generated in the laboratory, extrapolating these results to the field

also requires reliable estimates of the frequency of grain-grain collisions and the transport

distances between collisions (Sklar and Dietrich, 2004; Turowski et al., 2013). Duration of

tumbling mill experiments is used as a proxy for distance in the field, providing only an

indirect link to abrasion rate.

A new approach has been undertaken recently, in which a generalized geometric theory
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for abrasion (Firey , 1974; Bloore, 1977) has been adapted to describe the evolution of

pebble shape; this process can be visualized by plotting shape descriptors versus volume

(Domokos et al., 2014). The model will be described below, but its essence is that abrasion

rate at any point on a pebbles surface is a function of the local curvatures. Experiments

involving a single initially-cuboid pebble in a tumbler, designed to simulate the idealized

conditions assumed in the derivation of the model, showed quantitative agreement with

model predictions (Domokos et al., 2014). Results imply that the significance of bed load

abrasion in a river may be assessed by examining changes in pebble shape and volume

downstream, circumventing the need to extrapolate abrasion rates from the laboratory. A

major finding from the geometric theory and its companion experiment was that abrasion

of an initially blocky particle occurs in two phases: Phase I, in which the pebble abrades

to a convex shape without any major change in axis dimensions; after which it proceeds to

Phase II, where the convex pebble slowly reduces its axis dimensions.

If two-phase abrasion occurs in rivers, it suggests that most of the mass loss from abrasion

goes undetected in field studies because researchers only measure diameter. It is an open

question, however, whether the idealized geometric model may be applied to abrasion by

bed load in natural field settings. This paper presents the first use of geometric theory

to identify two-phase abrasion and its significance in a natural river. First we present the

general theoretical framework, which informs our choice of parameters to characterize the

size and shape of pebbles. We then introduce a field location in northeast Puerto Rico, where

a river was selected that allows us to isolate the contributions of abrasion and size-selective

sorting. By examining downstream trends in pebble size and shape over ten kilometers,

we test for the qualitative pattern of two-phase abrasion and seek quantitative verification

of the geometric model. A simplified abrasion and deposition model is then employed to

determine the contribution of abrasion and size-selective sorting to downstream diminution

of pebble mass and diameter. Finally, we present a generalized method for determining the

contribution of abrasion in other field settings.
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3.2. Theory of Pebble Abrasion

3.2.1. Kinetic Energy, Mass Loss, and Sternberg’s Law

Numerous theoretical and experimental studies have demonstrated that the magnitude of

mass removed from a particle undergoing collision is proportional to the kinetic energy of the

impact (Anderson, 1986; Attal and Lave, 2009; Domokos and Gibbons, 2013). Assuming

a steady rate of impacts over time, in the continuous limit the rate of mass loss for a

pebble of mass M due to abrasion becomes dM/dt = −kMu2
s, where us is the velocity of

the pebble, and k is a coefficient related to strength of the rock and additional transport

parameters not explicitly considered. For bed load transport in a typical alluvial river, us

is proportional to the stream fluid velocity (uf ) (see Lajeunesse et al. (2010); Martin et al.

(2012), which is only a slowly-varying function of discharge (uf ∝ Q1/6) (Leopold et al.,

1964; Parker et al., 2007). To first order, one can thus consider pebble velocity constant,

with two consequences: (1) the rate of mass loss of a pebble is proportional to its mass; and

(2) downstream distance in a river is proportional (but not equivalent) to time (ds ∝ usdt).

Thus, one expects that downstream changes in pebble mass due to abrasion will take the

form of an exponential, dM/M ∝ −kdx → M ∝ M0e
−kx. Cast in terms of pebble volume

(assuming constant density) and neglecting coefficients of proportionality, the downstream

diminution of pebble size due to abrasion takes the form:

V = V0e
−kx. (3.2)

It should be apparent that eq. (3.2) is related to Sternberg’s Law (eq. (3.1)). Indeed,

laboratory experiments that measure mass loss demonstrate the validity of eq. (3.2), but

then convert it into Sternberg’s Law by assuming that D ∝ V 1/3 (and hence α = k/3) to

predict the anticipated effect of abrasion on downstream fining (Kodama, 1994a; Lewin and

Brewer , 2002). Although the heuristic derivation above is rather simplistic, it demonstrates

that one can rationalize Sternberg’s Law (eq. (3.1)) from either size-selective sorting (Fedele
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and Paola, 2007) or abrasion. The assumed proportionality between pebble diameter and

volume results from an assumption that pebbles abrade in a self-similar fashion. This is

certainly not true for river rocks which evolve from blocky fragments to smooth ellipsoidal

shapes (Krumbein, 1941; Kuenen, 1956; Lewin and Brewer , 2002; Durian et al., 2006;

Domokos et al., 2014). For initially polyhedral particles, abrasion may remove up to half

of pebble mass without any reduction in D (Lewin and Brewer , 2002; Domokos et al.,

2014). Proper accounting for this geometric effect will paint a more accurate picture of the

significance of abrasion.

3.2.2. Two-Phase Abrasion

The geometric modeling of pebble abrasion dates back to Bloore (1977), who described the

shape evolution of a single pebble under collisional abrasion. The 2D equivalent of Bloores

equation can be formulated as

v = 1 + cκ (3.3)

where v is the attrition speed in the inward normal direction, c is the (average) perimeter

of the abrading particles in the environment (Varkonyi and Domokos, 2011) and κ is the

local curvature of the evolving 2D curve. In this description of abrasion there are two

competing terms. If the abrading particles are small then c is also small and the first (so-

called Eikonal) term (v = 1) dominates the process. This causes shapes to develop sharp

edges and flat areas (Fig. 3.1a) such as in case of sandblasting (Knight , 2008; Domokos

et al., 2009). The second curvature term (v = cκ) dominates if the abrading particles are

much larger, i.e. c is also large (Fig. 3.1b). We will call this second case curvature-driven

abrasion. In 3 dimensions, κ is replaced by the linear combination of the so-called Mean and

Gaussian curvatures; however, in case of very large abraders the Gaussian term dominates.

In the field, curvature-driven abrasion can be interpreted as a saltating pebble undergoing

abrasion by collision with a substrate composed of very large particles (boulders or bedrock).

Curvature-driven abrasion depicts surface abrasion of a pebble as a diffusion process – akin

to hillslope diffusion (Culling , 1960; Hirano, 1968; Roering et al., 1999) – and it predicts
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that arbitrary initial shapes converge asymptotically to a sphere (in 2D, a circle, Fig. 3.1b)

(Firey , 1974; Andrews, 1999). (For a more elaborate description of geometrical abrasion

theory, see Varkonyi and Domokos (2011); Szabo et al. (2013)).

Recently, Domokos et al. (2014) performed laboratory experiments simulating curvature-

driven abrasion in which a single cuboid was abraded in a rotating drum that can be thought

of as a very large abrader. They demonstrated that curvature-driven abrasion occurs in two

phases, both in numerical simulation and in experiments: in phase I, sharp edges with high

curvatures rapidly round off without major changes in the global axis dimensions until the

original angular particle evolves to an ellipsoid-like shape; subsequently, in phase II, axis

dimensions start to decrease slowly and the pebble becomes more spherical in shape (Fig.

3.2). While shape evolution occurred in two phases, they found that the rate of mass loss

was continuous through both phases, and depended only on pebble mass; in other words, the

volumetric diminution described by eq. (3.2) applies to abrasion in all phases, regardless of

shape. However, the diameter diminution described by eq. (3.1) (Sternberg’s Law) does not

apply to Phase I abrasion, where diameter is almost constant. These authors thus suggested

that eq. (3.2) is a more applicable “Generalized Sternberg’s Law”, relevant for abrasion.

Although theory and experiment were for the idealized case of a single particle colliding

with an infinitely large abrader, Domokos et al. (2014) suggested that this assumption might

be relaxed such that the theory could apply to like-sized colliders in bed load transport.

There are qualitative indications from a re-examination of classic experiments by Krumbein

(1941) and Kuenen (1956) that this is indeed the case. This idea is explicitly tested in this

study with field data.

Domokos et al. (2014)tracked several shape descriptors in both laboratory experiments and

the corresponding numerical models. The simplest shape descriptors are the axis ratios S/L

and I/L, where L > I > S denote the three axis lengths of the bounding box of the pebble

(Fig. 3.3). Axis ratios S/L and I/L remained approximately constant during phase I, and

increased in phase II as the particle evolved towards a spherical shape. Another shape
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descriptor tracked in their work was the convexity defined as Conv3D = SC/SH , where SC

is the surface area of the convex regions and SH is the total surface area of the convex hull

of the particle. As the area of the intact surfaces of the abraded particle decreased during

phase I, convexity increased in their experiments and numerical simulation until reaching

Conv3D = 1, and this value stayed constant in the subsequent phase II.

Numerous other shape parameters have been proposed in the literature to quantify the

morphology of pebbles (Blott and Pye, 2007). Many of these parameters are defined on 2D

projections of pebbles. The advantage of the latter is that one may take photographs of

pebbles in the field and compute the shape descriptors automatically using standard image

processing software. However, the evolution of most of these shape descriptors under curva-

ture-driven abrasion is unknown. Nevertheless, we are aware of two 2D-shape descriptors,

which are known to change monotonically under curvature-driven abrasion – and hence

may be used to test the geometric theory. The first one is the isoperimetric ratio defined

as IR = 4πA/P 2, where A is the area enclosed by the evolving 2D curve and P is the

perimeter of the curve (Fig. 3.3). IR is often referred to as circularity (Blott and Pye,

2007) or roundness (Cox , 1927) in the literature. For a perfect circle IR = 1, and for any

other curve IR < 1. It was proven by Gage (1983) that IR increases monotonically under

curvature-driven abrasion. Although the shape evolution of a 2D curve differs from the

shape evolution of the 2D projection of a 3D particle, we expect similar behavior for the

projections.

The second shape descriptor is the entropy defined by the curvature distribution along the

perimeter of the 2D curve, which we will refer to as the curvature entropy. Curvature

entropy was originally defined for smooth, convex curves by Chow (1991), who showed that

if the perimeter of the curve is normalized to unity (P = 1) then the curvature entropy

increases under curvature-driven abrasion. However, a pebbles surface is naturally non-

smooth (Domokos et al., 2012) and, moreover, a photo taken of the 2D projection of a

pebble has a finite resolution, so in our approximation pebble contours are represented by
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convex polygons. By suitable interpolation we replace the original polygon by a polygon

with equal sides. In this case, instead of using the curvature entropy as described in Chow

(1991), we apply its discrete analogue, the so-called Shannon information entropy (Shannon,

1948), HS = −
m∑
i=1

αi
2π log

(
αi
2π

)
. Here, αi is the external angle at the ith vertex of the m-sided

convex hull of the pixel contour resulting from the image processing (Fig. 3.4). Based on

the results of Chow (1991), it can be shown that for fixed value of m, the Shannon curvature

entropy HS also increases under curvature-driven abrasion. The physical interpretation is as

follows. As the 2D contour of a pebble evolves toward a circle under abrasion, the curvature

along the pebbles perimeter becomes more uniform (and curvature entropy increases); for

a perfect circle, curvature is equal at all points on the curve (and entropy is maximized).

The last shape descriptor applied in our study is the number of static equilibrium points,

which was recently proposed to classify pebble shape (Domokos et al., 2010). Equilibrium

points are points on an objects surface where the object may rest stationary on a horizontal

surface. Stable and unstable equilibrium points correspond to local minima and maxima

of the objects radius from its center of gravity. One advantage of measuring equilibrium

points is that they are integers that may be objectively counted in the field by simple

balancing (as long as grains can be manually lifted). Figure 3.2 illustrates that the numbers

of stable (S) and unstable (U) equilibria are expected to decrease during phase I abrasion,

as corners round and the initially angular shape with many equilibrium points approaches

an ellipse-like shape with only two stable and two unstable equilibrium points. In phase

II, this decreasing trend stops and the number of equilibrium points is expected to remain

S = U = 2. Table 3.1 summarizes the above discussed shape descriptors and their expected

evolution under curvature-driven abrasion; these will be used to test for the presence of

two-phase abrasion in field data.

3.2.3. Box Equations for Modeling Phase II Abrasion

While eq. (3.3) can capture the shape evolution in both phase I and phase II, this equation

and especially its 3D equivalent (Bloore, 1977) are difficult to analyze both analytically
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and numerically. They also assume an invariable environment; i.e. that there is only one

abraded particle and that impacting particles are all identical and unchanging in shape

and size. Another drawback is that they only treat collisional abrasion, although frictional

abrasion (rolling, sliding) is likely to be important in Phase II of curvature-driven abrasion.

Thus, while eq. (3.3) and its 3D equivalent offer an adequate tool to understand the abrasion

of a single particle, and also offer a good approximation to the abrasion in Phase I, they

are, in their original form, inappropriate to numerically simulate the shape evolution of

large particle populations in the second phase where the shape evolution is dominated by

collective (particles abrade each other) and frictional abrasion.

A suitable solution for these problems is the use of box equations recently published by

Domokos et al. (2012). box equations were derived from the 3D equivalent of eq. (3.3)

by assuming that pebble shape is always a tri-axial ellipsoid. Thus, the box equations are

limited in that shape evolution may only be tracked in phase II, where the assumption of

ellipsoidal pebbles is valid. However, the main advantage of box equations is that they

are based on the concept of mutual abrasion and therefore they offer a model for the

collective evolution of a large number of pebbles through binary collisions. Additionally,

frictional abrasion can be easily included as an additive term. The original concept of

box equations was developed further in Domokos and Gibbons (2013), incorporating an

independent physical model for volume diminution. The general form of box equations is:

.
y = f c(y, z)Fc(y, z) + ff (y)Ff (y, vs, vr) (3.4)

.
z = f c(z,y)Fc(z,y) + ff (z)Ff (z, vs, vr) (3.5)

(cf. Domokos and Gibbons (2013) where the exact formulation of functions Fc and Ff can be

found). In this system of equations, y and z are two interacting particles where y represents

the abrading environment for z and vice versa and (.) denotes differentiation with respect to

time. Both y and z are three-component vectors with components Sy/Ly, Iy/Ly, Ly/2 and

Sy/Lz, Iy/Lz, Lz/2, respectively, so box equations aim to track the evolution of the axis
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ratios and the size (the semi-major axis length) of the pebbles. The first additive term on

the right-hand sides of eqs. (3.4)-(3.5), with superscripts c, describes collisional abrasion;

i.e. the result of many binary collisions between y and z. (Accordingly the arguments

include both y and z.) The second additive term, with superscripts f , describes frictional

abrasion, i.e. the rolling or sliding of a pebble on a substrate. (The arguments here include

only the particle in question, i.e. either y or z). The separate effects of frictional and

collisional abrasion in eqs. (3.4)-(3.5) are illustrated in Fig. 3.5. Coefficients Ccy, C
c
z and

Cfy , Cfz represent the intensity of collisional and frictional abrasion, respectively. These

coefficients may depend on the size of the particle, since it is well known that the mode of

transport (sliding, rolling, saltation, suspension) and thus the intensity of frictional versus

collisional abrasion depends on the size of the particle (Abbott and Francis, 1977; Drake

et al., 1988). Below, the box equations are developed into a numerical model that, when

applied to field data, allows us to quantify the contribution of abrasion to downstream fining

in a natural river.

3.3. Field Setting and Measuring Methods

3.3.1. Field Setting

We seek a demonstration that two-phase abrasion – predicted by the idealized geometric

model of a single abrader colliding with an infinite plane – occurs in the downstream evolu-

tion of pebbles undergoing collision due to bed load transport in a natural river. In addition,

we aim to quantify the contributions of abrasion and size-selective sorting to downstream

diminution of pebble mass and diameter in a river, by employing the box equations. We

expect, in general, that the dominant process governing pebble evolution in rivers changes

from abrasion in the energetic headwaters to size-selective sorting in the depositional al-

luvial plain (Shaw and Kellerhals, 1982; Dawson, 1988; Paola and Seal , 1995; Gasparini

et al., 1999; Jerolmack and Brzinski , 2010). Accordingly, an ideal field setting would be a

wadeable river that may be traversed from source to sink, with a point source of sediment

input at its headwaters. The river should be of very steep slope in the upper portions, with a
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bedrock channel bottom and no floodplain, to facilitate abrasion and suppress size-selective

sorting. The lower reaches of the stream should be characterized by a low-gradient alluvial

channel with well-developed floodplains, to allow the effect of size-selective transport to

manifest through deposition.

Our river of study is the Rio Mameyes and its steep tributary Bisley 3, located in the

Luquillo Critical Zone Observatory in northeastern Puerto Rico. Sediments in the channel

are composed almost exclusively of volcaniclastic lithology, which are fine-grained sedimen-

tary rocks (Seiders and Pease, 1971; Briggs and Aguilar-Cortes, 1980). The section of river

under study is ∼ 10 km long and its profile exhibits a concave shape, but with a clear

break in slope at the junction of Bisley 3 with the Mameyes (Fig. 3.6a). This tributary

was selected because of its continuous accessibility from the headwaters to the gravel-sand

transition in the mainstem. Bisley 3 contains a ∼ 10 m high knickpoint in its upper reaches.

The knick point appears to be a significant source of sediment to the channel downstream,

as piles of rocks up to ∼ 1 m in diameter may be seen just below it. Beyond 100 m down-

stream of the knickpoint, rocks within the stream exhibit no visible weathering rinds, and

are angular and irregular in shape (Fig. 3.6c). We performed Schmidt hammer tests on

∼ 10 particles larger than 1 m (the minimum size required for reliable measurements) at

each pebble count site to assess material strength. With the exception of the weathered

boulders in the vicinity of the knickpoint, sampled particles had consistent strength values

(mean of 95 N/mm2) with little variability and no downstream trend (Fig. 3.6b). Re-

sults suggest that bed load sediments should have approximately uniform susceptibility to

abrasion downstream. The lack of weathering rinds also indicates that abrasion is rapid

compared to in-stream weathering. We take the knickpoint as the beginning of bed load

transport in the river, and the limiting source location for sediment in the stream; it is

thus the origin of our profile (x = 0 km). Unfortunately it is not the only source of sedi-

ment; landslides are prevalent along the steep valley walls of Bisley 3, and are capable of

delivering very coarse and angular particles to the stream. Thus, sediment input is spatially

distributed rather than from a point source. Numerical models and field studies have shown

33



that spatial variations in sediment supply can produce either downstream fining (Pizzuto,

1995; Sklar et al., 2006) or coarsening (Attal et al., 2006) grain-size trends. The potential

effects of spatially-varying sediment supply could obscure expected patterns from abrasion,

and must be carefully considered when interpreting observed trends and model results.

Along the ∼ 2 km distance from the knickpoint to its junction with the Mameyes, Bisley 3

exhibits sporadic bedrock exposure, slopes generally greater than 0.1, and no floodplain; it

is a partially alluviated bedrock river (Howard , 1980; Whipple, 2004). We expect abrasion

to be dominant in this tributary with little to no size-selective transport, due to the general

preference for deposition in fully alluviated reaches and the lack of sediment storage in

bedrock reaches (Hodge et al., 2011). At the junction of the Bisley 3 tributary with the

mainstem Mameyes, the Mameyes is an alluviated bedrock channel confined in a valley. It

transitions at x = 5 km to a fully alluvial stream with a well-developed floodplain on its

exit from the mountains (Fig. 3.6a). River rocks in the Mameyes are rounded and nearly

ellipsoidal in shape (Fig. 3.6d). Our study region ends at the upstream boundary of the

gravel-sand transition on the Mameyes – i.e., we only examine the gravel portion of the

river where bed load predominates. We expect size-selective transport to dominate over

abrasion in the lower alluvial portion of the Mameyes.

The drainage area of the Mameyes watershed is 44 km2, with a mean annual rainfall of

> 4500 mm/yr at the headwaters and 1500 mm/yr at the mouth (Garcia-Martino et al.,

1996). Orographic effects and hurricanes produce intense rainfall events and frequent bed

load transport (Scatena et al., 2004; Heartsill-Scalley et al., 2007; Pike et al., 2010). A

recent study of tagged cobbles in Bisley 3 and the Mameyes showed that pebbles up to 0.3

m in diameter are mobilized approximately 20 times per year, and that some traveled up to

1.2 km over a two-year study period (Phillips et al., 2013). Based on the description above,

we expect that rapid Phase I abrasion occurs in the steep and energetic Bisley 3 tributary,

and then transitions to Phase II in the Mameyes. Because mass loss from abrasion reduces

the collision energy of a pebble (eq. (3.2)) (Jerolmack and Brzinski , 2010), we expect a
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downstream gradient of decreasing abrasion rate along the study profile, while fining due

to size-selective deposition should begin in the Mameyes on its exit from the mountains. A

key assumption in our approach is that abrasion occurs by chipping and planing, i.e., that

fragmentation due to crushing is not significant. Rock fragmentation would partially reset

particle shape evolution by creating sharp edges. If this process were dominant, none of the

observed downstream trends in particle shape would be consistent with the geometric theory.

It is likely that some degree of fragmentation occurs, which would slow the observed rate of

downstream rounding of grains, but the trends we present below indicate that it cannot be

dominant. Indeed, visual inspection of bed sediments showed very few fresh fracture faces

at each site, indicating that fragmentation was not significant in this river. However, no

attempt was made to quantify the occurrence of fragmentation as the required judgment

was deemed too subjective.

3.3.2. Measuring Methods

We selected 9 sites along Bisley 3 and 8 sites along the Rio Mameyes for detailed study

(Fig. 3.7). At each site, we performed measurements on two grain populations. For

grain population A, we collected 100-150 grains randomly, from the size range 20-200 mm

(in terms of axis length L). The lower limit in size was based on our desire to sample

only particles transported primarily in bed load; the upper limit represents the maximum

reasonable size of a rock that could be lifted. We measured the three axis lengths (L >

I > S) of each pebble and counted the number of stable (S) and unstable (U) equilibrium

points by hand (Domokos et al., 2010). These grains were also placed on a rigid board, with

axis S perpendicular to the board, and photographed from above to obtain images of the

maximum 2D projection of the grain. Axis ratios S/L and I/L were computed from the

measured axis lengths, while the images were used to compute the isoperimetric ratio (IR),

the curvature entropy (HS) and a 2D version of convexity defined as Conv2D = AP /AH ,

where AP is the area of the grains projection and AH is the area of the convex hull of the

projection (Fig. 3.3c). This convexity index is sometimes referred to as solidity (Rashband ,
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1997). Measurements at each site were averaged in stratified grain size ranges – 20-64

mm, 65-128 mm, and larger than 128 mm – to compensate for noise while allowing some

assessment of relations between size and shape that may arise, for example, by differing

modes or frequency of transport. For grain population B, Wolman pebble counts (Wolman,

1954) were performed by randomly selecting 100 particles from the surface of the bed and

measuring L, I, and S for each of them. There was no size restriction for measurement

B. The manual measurements provide rich data but are time intensive. To complement

and extend the spatial range of these data, we selected an additional 58 sites along the Rio

Mameyes and Bisley 3, where only image-based data were collected by taking photographs

of 40 randomly selected grains; we denote this as grain population C. Shape parameters

estimated from all grains at each site were averaged together to produce a single value per

site.

3.4. Results

3.4.1. Field Data and Two-Phase Abrasion

We first examine the downstream trend in axis dimensions measured from pebble counts,

in particular the I-axis length since this is the most commonly reported parameter in other

field studies. Throughout the length of Bisley 3 and the upper 3.5 km of the Mameyes, there

is no discernible trend in axis dimension for the entire grain population, as well as within

grain size groups (Fig. 3.8c). At approximately x = 5 km in the profile, roughly coincident

with the transition to the alluvial plain on the Mameyes, I begins to systematically decline

with distance downstream (Fig. 3.8c). The data permit but do not confirm – an exponential

fit to this downstream trend (eq. (3.1)). The axis ratios S/L and I/L fluctuate but show

no trend over the first ∼ 2 km studied, and then begin to slowly increase. These two

patterns are compatible with the constant and increasing trends expected from Phase I and

II, respectively, of the geometric abrasion theory, but are not conclusive (Table 3.1).

Convexity (Conv2D) shows a more robust and smooth pattern with distance downstream
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(Fig. 3.8h); it first rapidly increases over a distance of 1.5 km, and then appears to saturate

at a value of approximately 0.981 indicating almost completely convex shapes. Values for

IR increase rapidly over the same distance as convexity, and then continue to increase but

at a lower rate over the remaining distance downstream (Fig. 3.8g). Similarly, the trend

for entropy tracks convexity and IR (Fig. 3.8i). Finally, the number of equilibrium points

declines rapidly over the same distance as other rapid shape changes, and then fluctuates

widely in the lower 8.5 km of the river. All of the observed shape parameter trends are in

agreement with qualitative predictions of curvature-driven abrasion (Table 3.1). Although

the exact location of the transition from Phase I to Phase II is uncertain, the shape data

together indicate that it begins around x = 1.5 km (around the mouth of Bisley 3) and is

complete by x = 3 km.

Average values for equilibrium points indicate that pebbles in Phase II are not ellipsoids

(S = 3.1 and U = 2.9), which may be a consequence of natural heterogeneity or effects such

as friction that are not accounted for in eq. (3.3) (Szabo et al., 2013). Nonetheless they are

almost entirely convex and smooth, indicating that describing pebbles in Phase II as tri-axial

ellipsoids – a prerequisite for applying the box equations – is a reasonable approximation.

Although pebble volume was not measured, it may be estimated for pebbles in Phase II

from measured axis dimensions (grain population B) by using the assumption of tri-axial

ellipsoidal shape: V = π
6SIL. Results show that pebble volume decreases downstream

in Phase II (Fig. 3.8d), in a manner consistent with an exponential form, i.e., eq. (3.2).

However, this volume decline may combine effects from both abrasion and size-selective

transport.

3.4.2. Numerical Model

Here we develop and implement a simple numerical model based on eqs. (3.4)-(3.5) pre-

sented above. The box equations are capable of modeling the collective evolution of a large

population of particles through binary collisions, assuming Phase II abrasion. Additional

terms may be added to account for deposition and frictional effects; by adjusting the mag-
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nitude of these terms in the model in order to match field observations, we may assess the

relative contribution of different processes to downstream changes in pebble size and shape.

Downstream pebble evolution is modeled below for the portion of the Mameyes over which

we infer that Phase II abrasion is operative. Therefore, the model is only run to simulate

grain evolution down the mainstem Mameyes, not Bisley 3. Initial size and shape parame-

ters for the model are taken from measured field values along the headwaters channel Bisley

3, as this channel and other similar tributaries are the primary sediment sources for the Rio

Mameyes.

Abrasion

In the numerical simulation of the eqs (3.4)-(3.5), following (Domokos et al., 2012) we

consider n particles and in each iterative step we choose the two particles y and z randomly

from the population and run the discretization of eqs. (3.4)-(3.5) for a short time period

∆t:

yi+1 = yi + ∆t[f c(y, z)Fc(y, z) + ff )y)Ff (y, vs, vr)] (3.6)

zi+1 = zi + ∆t[f c(z,y)Fc(z,y) + ff )z)Ff (z, vs, vr)]. (3.7)

Following the argument laid out in Section 3.2.1, we assume that the pebble travel distance

and model time are linearly related (also see Szabo et al. (2013)). This assumption presumes

a constant transport velocity as a first-order approximation, recognizing that the actual

virtual velocity of particles may vary downstream (Hassan et al., 1992; Ferguson et al.,

1996). We begin the simulation with an initial pebble population obtained from the field

measurements, and apply eqs. (3.6)-(3.7) iteratively for randomly chosen pebble-pairs;

the model result generates a time evolution for the axis dimensions of each pebble that is

equivalent to a downstream evolution (Fig. 3.5).

The mode of sediment transport depends on the size of the particle; small pebbles are

mainly saltating, while larger particles experience rolling and sliding (Abbott and Francis,
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1977; Drake et al., 1988). To take this effect into account, we assume that the intensity of

frictional abrasion grows linearly with the size of the particle, that is Cfy (Ly) = c1Ly and

Cfz (Lz) = c1Lz, where c1 is a constant and L is measured in mm. For the coefficient of

collisional abrasion, we assume constants Ccy = Ccz = 1. Since Ccy and Ccz do not depend

on the size of the particles, our assumption allows that even large boulders can collide with

each other sometimes. While this is probably not physically realistic, due to its rarity it

has little effect on the results. Also, by assuming a constant value for Ccy and Ccz we can

allow the physically relevant situation of a large particle (cobble, boulder) impacted by a

mobile pebble.

Selective Deposition

We use the numerical box model to analyze the role of abrasion and selective transport

simultaneously in the Rio Mameyes. Although several physical models of selective transport

have been proposed in the literature (Fedele and Paola, 2007; Ferguson et al., 1996; Paola

and Seal , 1995), and these models could, in principle, be integrated into the box equations,

this is beyond the scope of this paper. Instead, we couple the box equations with a simplistic,

phenomenological selective-deposition rule. Each pebble has an expected value for the

final distance traveled to deposition, X. Tracer measurements from the Rio Mameyes

showed that normalized step lengths are exponentially distributed in the river (Phillips et al.,

2013), thus we assumed that the final distance X is a random variable with exponential

distribution, where the parameter of the distribution is 1/E[X]. We assumed that the

expected value of X depends on the maximal size Ly of the particle: E[X] = c2e
−c3Ly , where

c2 and c3 are constants. We implemented this simple deposition rule into the numerical box

model eqs. (3.6)-(3.7) in the following way: in each iterative step, both for particles y and

z, we randomly draw a value for the final travel distance X using the above exponential

distribution. Then, if the actual distance from the source is larger than X, the particle is

deposited out of the flow, i.e. we remove it from the particle population.
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Abrasion and Selective Deposition

The three parameters (c1, c2, and c3) of the numerical model were fitted to obtain the best

agreement with the measured field data for the Rio Mameyes. The numerical simulation

began with approximately 3000 particles in the system, whose size ranged from L = 20

mm to 4 m. The time step was ∆t = 1/1000, and the total number of iterative steps was

500,000. We found that the optimal value for c1 (the coefficient in the assumed linear size-

dependence of friction intensity) is around 0.005. For the selective deposition law we used

c2 = 108 and c3 = 0.006. This produces an expected travel distance E[X] = 3.8 mm for the

upper limit (4 m grain), practically meaning that such a large boulder does not move. For

the lower size limit (20 mm grain) we have E[X] = 89000 km, i.e. such a small pebble will

never be deposited in the model. Figure 3.9 shows that the site-averages of the measured

field data and the corresponding model results match well using the above parameters. The

first row shows the averages from grain population A, where corresponding model results

were computed only from the particles which fell into the size range of measured field data,

i.e., 20-200 mm. The second row shows the shape and size evolution of the whole size range

(grain population B).

To better understand the role of competing physical processes in the numerical model, Fig-

ure 3.10 shows the main limiting cases. Model results with no selective deposition (solid

line) are not in agreement with the data for the entire size range, indicating that abra-

sion significantly underpredicts the degree of downstream fining. However, the predicted

size and shape evolution in the 20-200 mm size range is reasonable, suggesting that size-

selective deposition is ineffective in this restricted size range. For the second limiting case

of no abrasion (dotted line), we see that selective deposition alone cannot reproduce the

observed increase in the axis ratios of particles in the 20-200 mm size range. However, the

results for the whole particle population are reasonably good. We conclude that the strong

downstream fining observed in the whole size range is essentially due to selective deposition,

however, the role of abrasion is significant for particles in the size range of 20-200 mm. The
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third limiting case includes both selective deposition and collisional abrasion, but neglects

frictional abrasion (dashed line). Here we see that the predicted evolution of the axis ratios

in the whole size range is incorrect; simulated axis ratios increase, indicating movement

towards the sphere. This is because frictional and collisional abrasion work against each

other (Fig. 3.5); while particles get flatter and thinner under frictional abrasion (axis ratios

decrease), particles colliding with similar-size particles converge towards the sphere (axis

ratios increase) (Domokos et al., 2012). Thus the constant axis ratios measured for the

whole grain population in the field indicate that collisional abrasion of pebbles is balanced

by frictional abrasion of larger particles such as boulders.

3.5. Discussion

Data strongly indicate that two-phase abrasion occurs in the downstream evolution of peb-

bles along the Mameyes-Bisley 3 river system. Although downstream trends of individual

shape parameters are scattered, the collection of independent parameters all behave as pre-

dicted from the geometric theory (Table 3.1). Phase I abrasion occurs mostly in the ener-

getic and steep Bisley 3 stream, where pebble shapes evolve rapidly toward smooth ellipsoids

but axis dimensions remain constant. This result is consistent with anecdotal reports that

rapid rounding occurs “in the first few kilometers” of a river (Krumbein, 1941; Kuenen,

1956; Adams, 1979; Parker , 1991). Phase II abrasion plays out in the lower Mameyes river,

where axis ratios slowly increase while all other shape parameters remain approximately

constant. At the tributary junction between Bisley 3 and the mainstem Mameyes, shape

descriptors all show a smooth transition; this suggests that phase I abrasion is completed

within the headwater stream, and that downstream trends are not an artifact of merging

these two different rivers into one profile. That predictions from an idealized geometric

theory – of a single particle colliding with an infinite plain – are supported by field data

from a highly heterogeneous system of mutually-colliding pebbles under bed load transport,

provides compelling evidence that two-phase abrasion should be a general phenomenon. A

major difference in shape data from the field as compared to the idealized drum experiments
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of Domokos et al. (2014), however, is that pebbles in the Mameyes never become completely

ellipsoidal (Fig. 3.8e-f). It appears that collision-induced abrasion drives initially blocky

pebbles toward ellipsoids; but, as pebbles move into lower-gradient reaches of the river,

frictional abrasion from sliding and rolling prevents pebbles from further evolution along

this trajectory.

If sorting is absent in Bisley 3, as expected, we can observe the isolated effects of abrasion

in this steep, bedrock channel. In the alluvial portion of the Mameyes stream, however,

sorting exerts a strong influence on downstream trends of particle size. Grain diameter

data show significant decreases in pebble size, consistent with observations in other alluvial

rivers (Adams, 1978; Lewin and Brewer , 2002). Grain shape data, in particular the axis

ratios, show that abrasion is also occurring in these lower alluvial reaches. One central

question is “how much of a pebble’s mass is lost due to abrasion?”; this requires separating

and removing the effects of sorting. If pebble volume were known along the entire stream

profile, one could simply fit the “Generalized Sternberg’s Law” (eq. (3.2)) to Phase I data –

where we assume that no sorting occurs – to produce a model for mass loss due to abrasion

over the entire river length. However, it was not feasible to measure volume for all pebbles

in Bisley 3 and the Mameyes (and is likely not feasible for many rivers) due to their large

size. Separating the effects of abrasion and sorting from data alone therefore is not possible.

Here the box equations with deposition can be applied to interpret field data, in regions

where Phase II abrasion is operative. We examine the predicted trend in volume diminution

(in m3) for the box equations with no deposition included; the result, considering the full

particle population, is V = (0.012)e−0.053x. Because volume diminution by abrasion should

primarily be a function of pebble volume (eq. (3.2)) (Domokos et al., 2014), we use this

expression to extrapolate upstream to x = 0 km. The model result is that 38% of a pebble’s

mass, on average, is lost over the 10 km distance from the headwaters to the gravel-sand

transition.

That pebbles could lose approximately 40% of their mass along a relatively short (∼ 10
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km) distance implies that pebble mobility changes significantly due to abrasion. Parame-

ters that assess mobility, such as threshold Shields stress and sediment transport equations,

may produce misleading results when applied to steeper rivers where abrasion is significant,

because they assume that particles are spherical and may be represented by a single diam-

eter. In addition, the inferred pebble mass loss implies that significant quantities of sand

and silt are produced in situ. This generation of fine sediment may be a significant part

of the sediment budget, but it has never been quantified. Future field studies should aim

to determine if and what fraction of fine sediment in a river is the product of abrasion.

Whether there are geophysical and geochemical signatures of abrasion that may be used to

separate its products from other fine sediment sources is unknown to these authors.

It is encouraging that 2D shape parameters measured from images – in particular the

isoperimetric ratio, convexity, and entropy – are in agreement with the more laborious,

manual 3D measurements. Results suggest that the two phases of abrasion may be identified

from images alone, which should encourage researchers to test the generality of two-phase

abrasion in other rivers, and also aeolian environments where abrasion and sorting have

been observed (e.g., Jerolmack et al. (2011)). While these data serve to delineate the phase

transition from collisional abrasion, they are not sufficient to quantify pebble mass loss. A

practical guide for this problem, based on our findings here, is as follows: (1) Use 2D image

data to identify phases I and II of abrasion; (2) measure all three axis lengths of pebbles

contained within the regime of phase II abrasion to determine pebble volume (or, measure

the masses of all pebbles if they are small enough to be lifted!; if so, then no further work

is needed); (3) fit the box model with deposition to the downstream pattern of axis ratios

in Phase II; and (4) use model results to identify the rate of volume diminution that is due

to abrasion alone.

A final note of caution is warranted in the interpretation of our observations and modeling

results. While it is beyond the scope of this work to explicitly model the effect of spa-

tially varying sediment input on particle size and shape trends, we must acknowledge that
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sediment input in our study river (and indeed, in most other rivers) is spatially variable.

The effects of spatial variability have been explored in models (Pizzuto, 1995; Attal et al.,

2006; Sklar et al., 2006; Chatanantavet et al., 2010), which have demonstrated that the

combination of lithologic changes and tributary inputs may cause downstream trends in

grain size that are independent of either abrasion or size-selective sorting. It is possible

that spatially varying sediment inputs, and spatial trends in input shape, could conspire to

produce the observed downstream patterns of size and shape in the Mameyes watershed.

This is unlikely, however, and strength measurements (Fig. 3.6b) indicate at least that the

observed trends are not related to variation in material properties. The most likely influence

of spatially varying sediment input would be to obscure the trends of two-phase abrasion,

rather than to introduce new trends. The primary contribution of the work presented here

is the demonstration of the significance of two-phase abrasion in a natural stream, which we

believe to be qualitatively robust. The quantitative results and modeling efforts illustrate

the potential magnitudes of abrasion versus sorting, but spatially varying sediment input

likely exerts an influence on the reported numerical values of each.

3.6. Conclusions

To summarize, this field investigation has demonstrated two-phase abrasion in a natural

setting using a set of shape descriptors determined from simple hand measurements and

image analysis techniques. Phase I abrasion takes place over the first few kilometers in

the steep headwater channel, while phase II plays out over a larger distance in the lower-

gradient alluvial mainstem. This work provides a way to determine the relative importance

of abrasion versus selective transport for a given river system; the results of the box model

simulations give evidence that abrasion and selective deposition are both important to

reproduce observed size and shape patterns in the Mameyes watershed. Although the

relative importance of abrasion versus sorting can vary due to sediment supply, lithology

and transport conditions, application of the geometric theory suggests that abrasion controls

the downstream reduction in pebble mass while sorting determines the downstream trend in
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diameter. Incorporating explicit measures of pebble shape into future studies should allow

researchers to assess the contribution of abrasion in other river systems. To truly test the

generality of the two-phase abrasion model, future studies should replicate and expand on

this analysis, in other river systems and also in aeolian dune fields.
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a) b)

Figure 3.1: Sketch of shape evolution under the two terms of eq. (3.3). (a) The Eikonal
term; and (b) the curvature term. Figures are adapted from Szabo et al. (2013).
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Figure 3.2: Conceptual figure of two-phase abrasion on a rectangle, and its expected be-
havior along a river profile. In the energetic upper reaches of a river phase I occurs where
corners are abraded without any change in axis lengths while the numbers of both stable
and unstable equilibrium points decrease. In lower-gradient reaches phase II occurs, where
the axis ratio S/L (in 3D, S/L and I/L) increases, indicating that the pebble approaches
a circle (in 3D, a sphere), while the number of equilibrium points remains constant.
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Figure 3.3: Shape descriptors. (a) Axis dimensions L > I > S, as they are measured for
pebbles in the field. (b) Isoperimetric ratio IR measured from 2D projections of pebbles.
(c) Convexity Conv2D measured from 2D projections of pebbles.
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Figure 3.4: Image processing and curvature entropy (a) Raw image of pebble taken in
the field. (b) Image prepared for bulk-shape data analysis by converting to binary image.
(c) Interpolated polygon with equal sides. (d) External angles used to calculate curvature
entropy.
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Figure 3.5: Conceptual illustration of the effects of frictional and collisional abrasion in eqs.
(3.4)-(3.5) on the plane S/L - I/L. Sliding drives particles towards infinitely flat shapes
(S/L = 0), rolling results in an infinitely thin needle-like shape (S/L = I/L = 0), while
collisions between like-size particles produce spheres (S/L = I/L = 1). Figure adapted
from Domokos et al. (2012).
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Figure 3.6: Photographs of the field site. (a) River elevation profile with important tran-
sitions labeled. (b) Plot of uniaxial compressive strength (UCS) measured by Schmidt
hammer (converted from hammer rebound to UCS using relation in Kahraman (2001)) ver-
sus distance from headwaters. (c) Headwater tributary Bisley 3 is steep and contains large
angular pebbles. (d) Lower alluvial mainstem Rio Mameyes has shallow slope and contains
smaller rounded rocks.
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Figure 3.7: Map of field site, located within the Luquillo Critical Zone Observatory in
northeastern Puerto Rico. The red line outlines the Rio Mameyes watershed and the blue
line denotes the channel. Circles mark sampling sites. Yellow circles represent detailed
sampling sites where equilibrium points and axis dimensions were measured in addition to
images of pebbles (grain populations A and B). Red circles represent sampling sites where
only images of pebbles were taken (grain population C).
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Figure 3.8: Field results – Plots of site-averaged shape descriptors as a function of distance
downstream of the origin. Data in plots (a)-(b) and (e)-(f) are averaged at a site by the
following size classes: 20 to 64 mm (open circles), 65 to 128 mm (black squares), and greater
than 128 mm (grey triangles). Plots show: (a) average axis ratio S/L by different size class;
(b) average axis ratio I/L by different size class; (c) grain size measured as the intermediate
pebble diameter I; (d) estimated total pebble volume; (e) average stable equilibrium points
by different size class; (f) average unstable equilibrium points by different size class; (g)
average 2D convexity; (h) average isoperimetric ratio; and (i) average curvature entropy of
2D image contours.
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Figure 3.9: Plots of field data (black triangles) overlaid with results from full box model
simulations, showing trends for downstream distance for Phase II abrasion (only mainstem
Mameyes). (a) Average long axis for pebbles under 200 mm in length of L. (b) Axis ratio
S/L for pebbles under 200 mm in length of L. (c) Axis ratio I/L for pebbles under 200
mm in length of L. (d)-(f) Same as (a)-(c), but for the entire size range of pebbles.
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Figure 3.10: Plots of field data (black triangles) overlaid with results from box model
simulations in mainstem Mameyes with limiting conditions. Solid line is for model run with
no selective deposition, dotted line for no abrasion at all, and dashed line for no frictional
abrasion. (a)-(f) are the same as for Fig. 3.9.
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Shape Descriptor Measurement Method Expected Behavior
Phase I Phase II

Axis Ratios Hand Measure Constant Increase → y1 = y2 = 1
(y1 and y2)
Convexity Image Technique Increase → Conv3D = 1 Constant (Conv3D = 1)
(Conv3D) (Conv2D)

Equilibrium Points Hand Measure Decrease → S = U = 2 Constants (S = U = 2)
(S and U)

Isoperimetric Ratio Image Technique Increase → IR = 1
(IR)

Curvature Entropy Image Technique Increase
(HS)

Table 3.1: Table 3.1. Expected evolution of various 3D and 2D shape descriptors under
curvature-dependent abrasion.
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CHAPTER 4 : Universal Scaling Relations for Pebble Abrasion

Abstract:

River rocks round through the process of abrasion, where energetic collisions during bedload

transport chip and wear away the surface of the grain. Although previous work has shown

that impact energy and lithology are controlling factors determining abrasion rates, the

functional dependence between these quantities is unknown. Furthermore, most abrasion

studies only focus on the evolution of the initial grain, neglecting the fine particles produced

in the process. In this laboratory investigation, we examine the control of impact energy

on abrasion rates using a double-pendulum apparatus to look at the abrasion between two-

grains, and using a high-speed camera to quantify impact energy. We run experiments

on a range of lithologies and measure material properties to determine their dependence

on abrasion rates. Finally we collect and characterize the daughter products of abrasion.

Results from experiments verify that mass loss is proportional to kinetic energy. We define a

material parameter that incorporates material density, Young’s modulus, and tensile stress

and show that this parameter is directly related to the proportionality between mass loss

and energy. We identify an initial region of the mass loss curves in which abrasion is

independent of energy and material properties; results suggest this region is determined

by shape. We show that grain size distributions of daughter products are universal and

independent of material; they follow a Weibull distribution, which is expected distribution

from brittle fracture theory. Finally, scanning electron microscope (SEM) images show a

thin damage zone near the surface, the length of which correlates with the maximum grain

size of the daughter products. The apparent universality of both mass loss curves and

particle size distributions is in need of theoretical investigation to better understand the

underlying mechanics. However, the results are already proving useful for interpreting the

role of in-stream abrasion in downstream fining and the production of sand in the field.
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4.1. Introduction

Traveling downstream in a typical river, one observes river sediments becoming rounder in

shape (Sneed and Folk , 1958; Adams, 1978) and smaller in size (Sternberg , 1875; Ferguson

et al., 1996). While there is a debate over whether mechanical breakdown by abrasion

or hydraulic sorting caused by relative transport rates is responsible for fining patterns

(Kodama, 1991; Ferguson et al., 1996; Gasparini et al., 1999; Lewin and Brewer , 2002), it is

generally agreed that abrasion is the chief mechanism producing the rounding of sediments

(Kuenen, 1956; Sneed and Folk , 1958; Schumm and Stevens, 1973). Abrasion is the process

where river sediments are worn away due to energetic collisions with other grains and the

channel bed during transport (Kuenen, 1956; Kodama, 1994a). While there have been a

great deal of previous work investigating the process (Kodama, 1994a; Lewin and Brewer ,

2002; Attal and Lave, 2009), there is a lack of understanding of the fundamental physics

involved in sediment abrasion.

Sternberg (1875) attributed the downstream fining of grains to abrasion and quantitatively

described it by the exponential function:

D(x) = D0e
−αx (4.1)

where D(x) is the grain size at downstream distance x, D0 is the initial grain size at

x = 0, and α is the empirically determined diminution coefficient, which describes the rate

of grain size fining. Despite the fact that this expression lacks a mechanistic framework,

α values remain the most common way to describe abrasion rates. Most previous work

on abrasion has been through laboratory experiments (Krumbein, 1941; Kuenen, 1956;

Kodama, 1994a; Lewin and Brewer , 2002; Attal and Lave, 2009) because of the difficulty

in directly observing abrasion in the field (Sneed and Folk , 1958; Kodama, 1994b). These

experiments utilize tumbling mills or circular flumes to simulate abrasion and extrapolate

results to the field by using duration of experiment as a proxy for downstream distance
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(Wentworth, 1919; Krumbein, 1941; Kuenen, 1956; Kodama, 1994a; Lewin and Brewer ,

2002; Attal and Lave, 2009). However, laboratory measured α values (Wentworth, 1919;

Krumbein, 1941; Kuenen, 1956; Kodama, 1994a; Lewin and Brewer , 2002; Attal and Lave,

2009) tend to be lower than those measured in the field (Ferguson et al., 1996; Hoey and

Bluck , 1999; Morris and Williams, 1999) either because impact energies in experiments are

not as high as in the field (Kodama, 1994a), the assumption that experimental duration is

a proxy for travel distance does not account for abrasion in place (Schumm and Stevens,

1973), or added effects of hydraulic sorting on fining rates in the field (Ferguson et al., 1996;

Paola et al., 1992). These reasons highlight the need for a more mechanistic approach to

abrasion.

There has been some previous work relating impact energy to abrasion, however, none of it

has focused on fluvial sediments. Bitter (1963) proposed that deformation caused by dam-

age from repeated collisions between two bodies at low energies leads to material wear. He

suggested that the amount of volume detached from a material depends on impact energy

and material properties and confirmed this idea with measurements of wear of glass spheres.

Furthermore, field and laboratory investigations of windblown sand on stationary targets,

such as yardangs, have verified that the amount of abrasion is proportional to the kinetic

energy from collisions and that the proportionality factor depends on the material proper-

ties of the target (Anderson, 1986; Wang et al., 2011). Finally, numerical simulations of

agglomerate breakage from direct impacts have shown that the amount of damage depends

on the ratio of incoming kinetic energy from collision to the internal bond energy, deter-

mined by material properties (Kafui and Thornton, 1993; Le Bouteiller and Naaim, 2011).

Experiments simulating fluvial abrasion have observed an increase in diminution rates as-

sociated with increasing sediment transport velocities, but the exact functional relationship

between energy and abrasion has not been determined.

As mentioned above, research has shown that material properties determine the amount

of mass detached from an object after an impact of specific energy. Different lithologies
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can lead up to two orders of magnitude difference in abrasion rates (Attal and Lave, 2009).

Experiments by Attal and Lave (2009), conclude that lithologies with low tensile strength,

like sandstone, abrade faster than those with higher values, like limestone and quartzite.

Besides tensile strength, the field work on yardangs (Wang et al., 2011) and numerical

work on agglomerates (Le Bouteiller and Naaim, 2011) have demonstrated that material

density and Young’s modulus are also important quantities for abrasion. Although material

properties are known to have an effect on abrasion rates, the explicit dependence between

lithology and magnitude of mass loss is unknown.

Finally, most research on abrasion neglects the fine particles produced from the process,

even though it has been hypothesized that these products heavily contribute to sand and silt

populations found in rivers (Jerolmack and Brzinski , 2010). Recent work on the geometric

evolution of pebbles during abrasion predict that sediment can lose up to 48% of its original

mass just from rounding the edges of an initially angular pebble (Domokos et al., 2014).

With the large quantity of fines produced from abrasion, it is necessary to understand the

size distribution of these particles to understand their role in the river system. Recently,

Kok (2011) found that the grain size distribution resulting from dust aggregates follow

a Weibull distribution, which is in agreement with brittle fracture theory. However, the

daughter products of abrasion have never been examined in this manner.

Although previous work has shown that lithology (Attal and Lave, 2009; Wang et al., 2011)

and energy of collision (Bitter , 1963; Anderson, 1986; Le Bouteiller and Naaim, 2011; Wang

et al., 2011) are contributing factors that control abrasion rates of riverbed material, little is

known regarding the relationship between these factors and diminution rates. This research

explicitly isolates and investigates how these factors influence rates of abrasion. First we

determine how abrasion rates scale with energy by performing well-controlled abrasion

experiments. We run experiments over a range of different lithologies to see if measured

material properties determine the magnitude of abrasion rates. Finally, we characterize

the grain size distribution of the daughter products created during the abrasion process to
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see if it follows the expected distribution from brittle fracture theory (Kok , 2011). Unlike

previous abrasion studies, this work will rigorously consider the mechanics of fracture and

damage in solid materials to provide a better understanding of the underlying physics of

the abrasion process.

4.2. Methods

4.2.1. Hypothesis and Experimental Approach

We have two hypotheses that guide our experimental design. First, we hypothesize that

kinetic energy and lithology control abrasion rates of river sediments. From previous re-

search (Sklar and Dietrich, 2004; Attal and Lave, 2009; Le Bouteiller and Naaim, 2011;

Wang et al., 2011) and mechanical considerations we can state that

M = f(E, ρ, Y, σ) (4.2)

where M is the mass removed from an object after impact of energy E, and ρ, Y , and

σ are the material properties density, Young’s modulus, and tensile strength, respectively.

Dimensional analysis yields two dimensionless groups, Π1 = σM
ρE and Π2 = Y

σ . Rewriting to

solve for mass loss per impact energy, we obtain:

M

E
= f(A) (4.3)

where

A ≡ ρY

σ2
(4.4)

This analysis suggests that abrasion rate should be an explicit function of the material

property grouping A, which we refer to as the Abrasion number. The utility of A will be

tested experimentally in this study.

The second hypothesis that guides this work is regarding the daughter products of abrasion.

By the assumption from Griffith’s fracture theory that pre-existing flaws are distributed in-
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dependently within a material and activate randomly during a fracture event, it is expected

that fragments produced follow a Weibull distribution (Gilvarry , 1961). Research by Kok

(2011) recently found that the particle size distribution from dust aerosols eroded from soils

are described by a Weibull distribution:

dNf

d lnDf
∝ D−2

f (4.5)

where Nf is the number of fragments of size Df . Kok (2011) discusses how this power-law

relation follow from brittle fracture theory and is a consequence of the way in which cracks

nucleate and propagate within the material as stress is applied. These principles describe

the full fragmentation of materials, meaning that the aggregate breaks into many small

pieces with the largest piece being significantly smaller than the parent particle. We will

test whether the products of these abrasion experiments follow the same power-law scaling

for surface abrasion. Although collision energies for abrasion are well below values that lead

to complete fragmentation of the parent grain, we hypothesize that brittle fragmentation

may still occur over a small penetration depth near the impact site.

4.2.2. Experimental Design and Methods

To simulate abrasion between grains during saltation, while isolating the effects of impact

energy on mass attrition, we examine the amount of mass lost due to abrasion during a

single collision event between two grains. Although collisions in water can be viscously

damped, a laboratory investigation showed that bedload impacts, similar to those we are

modeling in these experiments on abrasion are partially elastic and alike to collisions in air

(Schmeeckle et al., 2001). Therefore, since our main goal is to determine the energy scaling of

abrasion, we conduct the experiments in air instead of water for simplicity, looking at impact

energies that are comparable to those observed in nature. Experiments are conducted using

a “Newtons-cradle” style double pendulum designed within a clear tank to allow for the

collection of the products of abrasion (Fig. 4.1). Rock samples are attached to threaded

rods within the tank by gluing flat-faced nuts to the top of each sample. The rod with
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the impacting grain is lifted by a motor and then released once it reaches a desired height,

colliding with the stationary target grain. After the collision, a braking system steadies the

target grain while the motor lifts the impacting grain again for the next collision. Both rods

containing impacting and target grains are able to rotate freely around in any direction,

allowing abrasion to occur evenly around the entire rock sample. To test the randomness of

the grain rotation, we filmed approximately 450 collisions between two test grains, recording

the location of impact on both the impacting and target grains. The distribution of impact

locations indicates that the collisions occur uniformly around each grain, with preferentially

impacting the high curvature regions of the protruding corners, as expected from geometric

abrasion theory (Firey , 1974) (Fig. 4.2). Grains are collided for set interval of collisions,

which increases throughout the experiment from 50 to 10,000 impacts. After each set of

collisions, the mass of both the impacting and target grains is measured using a microbalance

to determine the amount of mass lost due to abrasion.

In order to measure the impact energy, we recorded videos at the beginning of every set

of collisions with a high-speed camera mounted below the clear bottom of the abrasion

tank. We captured 5-10 collisions per set at 1000 frames per second. From the videos, we

measure the velocity of the impacting grain at the time of collision by tracking the location

of the grain as it approaches the target grain over approximately 40 frames, which equals

0.04 seconds. The impact velocity is measured as the slope of a linear fit to plots of travel

distance versus time. The average velocity for all experiments was approximately 1 m/s.

The kinetic energy at impact (E) is then calculated using the expression, E = 1
2miv

2,

where mi is the mass of the impacting grain at the beginning of the set and v is the average

velocity measured from all videos in that particular set. Energies for experimental runs

ranged from 0.035-0.220 j.

We run the binary collision experiment on the following 5 different materials to determine

the effect of lithology on abrasion rates: brick, quartz diorite, sandstone, schist, and volcani-

clastic (Fig. 4.3). The brick was selected as a test material for its homogenous structure.
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We used standard red clay builders bricks. Both the quartz diorite and volcaniclastic rocks

were collected in the Luquillo Mountains in northeastern Puerto Rico. The quartz diorite is

tertiary in age and originates from a batholith on the southern side of the mountain (Pike

et al., 2010). The volcaniclastic comprises most of the mountain and was formed in the

late cretaceous by marine deposited volcanic sediments (Pike et al., 2010). The sandstone

is a triassic reddish arkose sandstone of the Stockton formation in southeast Pennsylvania

(Olsen, 1980). The schist is Wissahickon schist from southeast Pennsylvania and is highly

deformed due to regional metamorphism during the lower Paleozoic (Weiss, 1949). The

brick was run multiple times with different size samples to see the effect of increased impact

energy on abrasion rate. Table 4.1 lists the different rock types and corresponding size for

each experimental run.

To control for shape effects on abrasion rates, we initially cut all grains into cubes. Then

throughout the experiment, we track changes in the shape of both impacting and target

grains by using a laser displacement sensor to scan a single surface contour around the

grain. Scans are made at the beginning of each set of collisions by holding the sensor in a

fixed position, while the grain rotates at a constant rate of 3 rpm on a turning platform. A

single contour for each grain is made by averaging 1 kHz laser data from approximately 7

full rotations. The distance data is then smoothed using a high pass filter at the noise floor,

which was determined from the time series of the entire dataset. The peak local curvature

at each corner was calculated from the second derivative of the contour. The peak from all

four corners was averaged together to give a mean curvature value. We also use a second

method to characterize the shape evolution of the abraded grains. Litwin Miller et al. (in

review) demonstrated that the curvature entropy is a monotonically increasing quantity

indicating the rounding of grains from collisional abrasion. We measure this quantity from

the laser scanned contours using the methods outlined in Litwin Miller et al. (in review).

Shape data were only collected for two sets of bricks, and a single set of quartz diorite and

sandstone specimens.
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Strength and material properties, including density, tensile strength, and elastic modulus,

were measured for each lithology used in the experiment. All measurements were made on

50 mm cores cut from ∼ 0.5 m rocks collected in the field (except for brick specimens).

The density of each core was calculated by dividing measured mass by volume determined

from triplicate caliper measurements of the diameter and length of the cores. The average

density of each lithology is comprised of individual values from 10-15 cores. Tensile strength,

a material property which describes the amount of stress applied in tension a material can

withstand before failing, was measured using an indirect method called the Brazilian tensile

strength test. This test measures the peak load for each sample to fail in tension. A stress

was applied to each sample by placing it in a specially fabricated metal fixture with a thin

stick of bamboo between the sample and the fixture on each side of the loading plane. The

bamboo sticks ensured that the load was only applied to the parallel radial axes at the

top and bottom of each sample. The fixture was then placed between two metal plates of

a Versa-Loader, an apparatus that raises its bottom plate, thereby applying a load at a

constant strain rate to the sample. After the sample fails breaking parallel to the loading,

the peak load at failure is recorded. The tensile strength of each sample is computed using

this value of peak load in addition to the dimensions of the sample, through the following

expression: σt = 2Fp

πld , where Fp is the peak force applied to the sample at failure, l is the

length and d is the diameter of the cylindrical sample (Vutukuri , 1974). In order to reduce

the uncertainty of the value of the tensile strength, 10-15 measurements of each lithology

were measured and averaged together to get a mean value. Finally, we measured the elastic

modulus, also known as the Young’s modulus which describes the stiffness of the material

by relating the amount of deformation of the material to an applied stress. We measure

this quantity for each lithology using an Olsen Resonance Tester (RT-1) and the methods

prescribed by the ASTM C215 standard. With this method, an accelerometer is attached

to the flat face of one end of the core, while a force is applied to the other end by hitting it

with a small hammer. The applied force sends a vibrational wave through the core where

the accelerometer records the longitudinal fundamental frequency. The elastic modulus
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(Y ) is then calculated using the expression: Y = Dmf2, where D is the shape correction

factor equal to 5.093 l
d2

for cylindrical cores, m is the sample mass, and f is the recorded

fundamental frequency. As with the other material properties, 10-15 measurements were

taken and averaged together to get a mean value for each lithology. This method produced

reliable values of elastic modulus for brick, schist, and sandstone, but because the sample

specimens were not long enough, we were not able to preform this test on the quartz diorite

or volcaniclastic rocks. Instead ranges of elastic modulus values from the literature were

compiled indicating that quartz diorite span a range from 20 to 70 GPa (Hughes and Jones,

1950; Merriam et al., 1970; Pratt et al., 1972; Fletcher et al., 2006) and volcaniclastic span

values from 5 to 50 GPa (Carlson and Wilkens, 1983; Apuani et al., 2005; Frolova, 2008;

Rotonda et al., 2010). Table 4.1 lists all the material properties values used in this study.

To better understand the modes of mechanical failure in the abraded particles, we prepare

polished thin sections and examine them using an scanning electron microscope (SEM).

The thin sections made from the plane perpendicular to the impact surface (Fig. 4.4a)

and are imaged between 200 to 6000 times magnification using a FEI 600 Quanta FEG

environmental scanning electron microscope. Images were taken moving along the edge

of the grains (Fig. 4.4b/c) and compared to images of the interior of the grain. We

then quantify the length scale over which damage occurs by taking between 600 to 1000

measurements from different locations around each grain of the distance of the most interior

crack that can be continuously tracked to the surface.

Finally, following each set of collisions, the daughter products of the abrasion process were

collected from the bottom of the tank. Although we attempted to collect all of the prod-

ucts from the abrasion experiments, small dust particles (< 1 µm) were observed to settle

outside the tank, so we only reliably collected grains larger than that size. Fines produced

throughout the entire experimental run for each pair of rocks were combined into one pop-

ulation for grain size analysis. Because the daughter products span a wide range of sizes,

to fully characterize the grain size distribution, we employ two methods. First, to describe
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the coarse grains, we wet sieve the daughter products into three size fractions: < 0.5 mm,

0.5 mm to 1.0 mm, and > 1.0 mm. The coarser two fractions are dried in an oven and sub-

sequently weighed to determine their contribution to the entire size distribution. The grain

size of the daughter products finer than 0.5 mm is measured using the Beckman Coulter

laser diffraction particle analyzer, which determines the volumetric grain size distribution

by deconstructing the diffraction pattern produced by shining a laser through a liquid so-

lution containing the fine-grained sample. Because of the large quantity of fines produced

from the abrasion experiments, we perform repeated subsampled measurements of grain

size using the Coulter counter. We select five subsamples from a mixture of fine particles

and deionized water. To ensure consistent subsampling of a homogenous mixture, we use a

magnetic stirrer while selecting samples. We compare measured distributions from all five

subsamples to ensure that each were uniform and representative of the entire population.

We then merge the grain size date for the coarse grains from sieving with the fine grains

from the particle analyzer by normalizing the volume fraction for each by the total volume

lost during the experiment, calculated from measured mass and density values. Following

the method used by the particle analyzer, the distribution is converted from volume fraction

to number fraction by assuming the grains are spheres.

4.3. Results

We ran the binary collisions experiment on a total of 5 sets of bricks, 2 sets of quartz

diorite, and a single set of sandstone, schist, and volcaniclastic. Throughout the course of

each experimental run, the initially cuboid rocks would quickly lose their sharp corners and

then slowly become rounder without any major fragmentation. There were two exceptions

to this case. First with the sandstone around 20,000 collisions, a large piece, roughly 2 cm

long and 1 cm wide, broke off one of the corners exposing a reddish-orange oxidized surface.

Then with the schist on three occasions, an entire block of the cube grain fell off, fracturing

at weathering planes. In both cases, fracturing occurred at a pre-existing weak region of the

rock that appeared to be associated with chemically-weathered surfaces. Furthermore, we
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observed in both the instance of the sandstone and the schist, that immediately following

the large fracture events, the mass loss of the finer fragments from the parent grain would

increase as the freshly exposed rough surface of the grain smoothed.

Plots of mass loss against cumulative impact energy for all rock types show two distinct

patterns: an initial rapid phase of mass loss that is similar for all lithologies and impact

energies, and then a transition to a slower, linear mass loss curve whose slope varies with

rock type (Fig. 4.5a). To test the functional relationship between mass loss and energy, we

performed experiments with three different masses of brick, spanning a range of collision

energies of 0.04-0.22 j. Mass loss curves for all experiments are in good agreement with

each other, and with a single linear trend (Fig. 4.6). Linear fits were then made to all mass

loss curves, resulting in the relation:

M = kE + b. (4.6)

To test the robustness of the linear fit, we generated a plot of M − b versus kE; the collapse

of data for all experiments shows that a linear relation is reasonable, but as anticipated

fails to fit the initially-steep portion of the mass loss curve (Fig. 4.5b). We want to relate

the two parameters in the linear fit (eq. (4.6)) to physically-meaningful quantities. The

slope k, which controls the longterm abrasion rate for a given energy, should be controlled

by material properties and hence be related to A. Data indicate that indeed the fitting

parameter k is proportional to A (Fig. 4.7a). The intercept of this plot (k = 0) indicates

that abrasion rates approach zero at a finite value of A; in other words, for the (low) energies

explored in this experiment, very strong rocks should experience little to no abrasion. The

volcaniclastic rock appears to be close to this value, and indeed this is the one rock type

that never reaches the asymptotic linear regime of abrasion. From a plot of b versus initial

mass (M0), we find that the value b in relation (4.6) is related to the quantity of pebble

mass that is lost before abrasion reaches the slower, linear portion of the mass loss curve

(Fig. 4.7b). In other words, it is the amount of abrasion that occurs in the rapid, first
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portion. The parameter b shows a linear relation with the initial mass of each particle,

indicating that the ratio b/M0 = 0.0018 is approximately constant for all experiments (Fig.

4.7b). This result suggests that all particles transition to the slower, linear portion of the

mass loss curve when they have lost a certain fraction of mass. Since collision energies

and rock strengths are different, the only factor common to all experiments was particle

shape; all particles were initially cuboids. To test whether b is related to shape, we plot

the evolution of corner curvature and mass against cumulative energy (Fig. 4.7c); results

show that the former tracks the latter, and becomes approximately constant when rock

mass M/M0 = 0.0018. This is the same value as b/M0, meaning that curvature of corners

becomes constant when the fraction of mass lost is equal to b/M0. This result is additionally

verified by the curvature entropy characterization of grain shape. For the two brick sets

and the sandstone, the change in curvature entropy mirrors the change in mass loss (Fig.

4.8). It appears that the intercept b is indeed related to shape.

By putting together the abrasion number and initial mass corresponding to k and b, the

abrasion relation for mass loss versus impact energy is:

M = C1
ρY

σ2
E + C2M0 = C1AE + C2M0 (4.7)

where

C1 = 8× 10−6 C2 = 0.0018 (4.8)

For the case when M � 0.0018M0, the abrasion relation reduces to

M = C1AE →
M

E
= C1A (4.9)

This abrasion relation suggests that when the sharp edges are worn away, the abrasion rate

is directly proportional to the abrasion number multiplied by the constant C1.

The SEM images show a considerable amount of damage in the region near the edge of the

grains (Fig. 4.5b/c). This damage is characterized by large cracks that span parallel to the
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abrasion surface with smaller cracks branching perpendicular to them. In some instances,

these cracks produced from impact intersect with inherent cracks or grain boundaries of the

material, extending the damage zone further into the interior of the grain. The results of

the damage zone length measurements are plotted in Fig. 4.9. The tail of the distribution

of lengths shows power-law scaling with exponents that range in value from -1 to -2.3. We

observe convergence of all distributions for each lithology in the large length limit, where

the cracks are easiest to discern and measure. However, in the lower length limit, the

distributions diverge as the length measurements become less reliable due to the resolution

of the images.

The results from the daughter product grain size characterization are shown in Fig. 4.10.

The plot combines the full measurements from the laser particle analyzer and sieving meth-

ods. Distributions from all lithologies and experimental runs show the same functional form.

However, the full distributions displays artifacts of the measuring techniques in both the

fine and coarse tails of the distributions. For the fine tail, the distributions drops off rapidly

presumably due to the combined effects of the low end measuring limit of the particle an-

alyzer and the loss of material during the collection of daughter products. For the coarse

end of the Coulter counter data, sieving produces artifacts in the grain size distributions as

the particle size approaches the sieve diameter, as evident by the erratic fluctuations in the

grain size distributions on approach to d = 0.5 mm. Ignoring Coulter counter data over the

range 0.2-1.0 mm, we observe a consistent and smooth grain size distributions from 1 µm

to the maximum observed size from sieve analysis, for all rock types.

To determine the functional form of the grain size data, we remove the unreliable data

points that are biased by the measurement method; for the fine tail, this includes grain

sizes less than 1 µm, and for the coarse tail includes particle analyzer data greater than

200 µm. We normalize each curve by its mean value causing all curves to collapse on each

other so we may fit one function to the entire data set for all lithologies. We then solve for

the best fit power law to all data points. The fit shows an exponent of 2.5, which is slightly
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higher than the expectation for full fragmentation, but still follows a Weibull distribution

with very good agreement (Fig. 4.10).

4.4. Discussion

While a linear relation has been shown to reasonably model aeolian erosion (Anderson,

1986), our experiments definitively demonstrate that this linear relation is applicable for

energies associated with fluvial bed load transport, over a wide range of rock strengths.

There is an intriguing shape dependence on the initial abrasion rate. Indeed, data seem

to indicate that these initially very angular cubes all abrade at the same rate regardless

of energy or strength, until the corners are suitably rounded such that energy and rock

strength become important. We speculate that in this region the corners are so sharp that

virtually any impact can remove mass, because the required crack is infinitesimal in the

limit of infinite curvature. However, rocks achieve the secondary linear mass loss curve

quickly while the rocks are still very close to cuboids. Thus, for natural streams it is likely

a reasonable assumption that b may be neglected; therefore, the relation M/E = C1A is

the applicable one to examine abrasion in natural streams.

The demonstration that A indeed controls mass loss is a very important one. Previous

work on bedrock erosion has shown that the amount of mass removed depends on the in-

verse square of the tensile strength (Sklar and Dietrich, 2004). However, these experiments

elucidate clearly and simply which rock material properties need to be taken into account

through the development and verification of the Abrasion number A. A similar dimension-

less number was proposed by Wang et al. (2011) for the abrasion of yardangs by windblown

sand, but here we verify the concept for energies relevant to fluvial transport. However,

we find that mass loss and impact energy are not directly proportional by A, but instead

C1A. The physical meaning of C1 likely combines a few factors, of which we hypothesize the

proportion of impact energy that goes into damage may be most important. This amount

of energy is not only related to material properties, but also to the details of the collision

itself; the impact angle, rotation speed of the impacter, etc. (Wang et al., 2011). The value
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of C1 may also be related to particle shape, although experiments by Domokos et al. (2014)

show that M/E is constant for a given particle over nearly the entire evolution from cuboid

to sphere, suggesting perhaps the C1 is independent of shape. Regardless, the Abrasion

number, A, is a useful similarity criterion for comparing laboratory and field abrasion rates,

however rates determined from our experiments may not yet be directly scalable to the field

due to uncertainty in the controls on C1.

Although results from these experiments display a steady linear mass loss with impact

energy, as we saw with the large fracture events with the sandstone and schist, chemi-

cal weathering can play an important role in the breakdown of river sediment. Howard

(1998) observed higher rates of bedrock erosion in regions with more chemical weathering

and thereby showed that chemical weathering weakens rocks and reduces material strength.

While we find that material properties control abrasion rates, chemical weathering can

cause a weakening of these material properties. We observe fragmentation events along

weathering planes, similar to those observed in experiments of Kodama (1994a). In these

instances, new angular and rough surfaces produced from the fragmentation process have

high abrasion rates. On the one hand, chemical weathering appeared to create internal

planes of weakness that facilitated failure of large chunks under low-energy abrasion. In-

deed, these events caused fluctuations in the mass loss curves that were not observed in

more structurally sound (stronger) materials. However, when observed over thousands of

collisions (i.e., many fracture/failure events), the sandstone and schist rocks collapsed onto

the same linear curve as other lithologies after accounting for material strength. It ap-

pears that mechanical weakening from chemical weathering may be reasonably described

with the measured material properties that constitute A, so long as tested rock cores are

representative of the particles in question. In a natural setting, we expect that the effects

of chemical weathering will be more dominant in transport-limited environments where

chemical weathering rates outpace mechanical abrasion. On the contrary, where sediment

is transported frequently, abrasion is actively maintaining fresh unweathered surfaces on

rocks, and therefore weathering features are not able to persist.
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In the limit where k = 0, the Abrasion number, A, does not likewise approach zero, but

instead is associated with A = 0.25. This non-vanishing value of A implies that for the

range of energies examined in this experiment, there is a limiting rock strength at which

little or no abrasion occurs. This result would suggest that some materials should not

abrade significantly under impact energies representative of bed load transport. For our

experiments, the volcaniclastic rocks are close to this limit. Observations of downstream

evolution of pebble shape for volcaniclastic rocks in the River Mameyes in Puerto Rico

have shown that significant abrasion occurs (Litwin Miller et al., in review). However, the

pebbles from the field were all at least 4 times larger than those used in the laboratory, while

estimated collision velocities were comparable. The combined observations of volcaniclastic

rocks from experiments and the field suggest that possibility that, as particles lose mass

downstream due to abrasion, there is a potential lower limit in size that is controlled by

rock strength. This idea needs to be explored in more detail.

The results from the SEM images display a region of damage near the impact surface of

the rocks. However, because the distributions of crack lengths from the SEM images are

unreliable in the small length limit, the only sound conclusions we can make from these

results are for the large crack sizes. It should be noted that the large length limit is an

order of magnitude larger than the smallest resolvable length, so these measurements are

dependable. Furthermore, with the thin sections imaged, we were only examining a 2-

dimensional slice of a 3-dimensional object. Therefore, the measured distribution of crack

lengths is a result of both the actual crack length and its orientation, as the length of

the cracks running obliquely to the thin section plane will be underestimated. With these

considerations, we find that the maximum damage length measured from the SEM images

is on the order of 1 mm, which corresponds to the maximum size of daughter products (Fig.

4.9). If the maximum crack length was governed by the attenuation of impact energy, as we

hypothesized, the length scale would vary with material properties. Surprisingly however,

the maximum crack size and the maximum daughter product are comparable in size across

all lithologies, suggesting that for the low energies of abrasion explored in this experiment,
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material properties do not control the scale of these features. We speculate that for the

range of energies explored here, the maximum length of the damage zone is dominantly

controlled by the geometry of crack growth and merger. In this geometric argument, cracks

initiate at the surface and propagate inward until they intersect with another crack. The

maximum size would then relate to the maximum length a crack can propagate before

merging with another crack to liberate material. However, application of fracture theory

to 3-dimensional reconstructions of the damage zone is necessary to fully understand the

fracture mechanics of the abrasion of these rocks.

A classic model for understanding the grain size distribution resulting from wear is brittle

fracture theory developed by Griffith (1921), who hypothesized that all materials contain

pre-existing flaws or cracks. The theory also states that when an applied stress exceeds

a critical value, the concentrated stress at the tips of these cracks is released as the crack

propagates. Growth and intersection of these cracks cause ultimate failure of the material.

In the large energy limit of crushing, where complete disintegration of the parent particle

occurs, Gilvarry and Bergstrom (1961) showed that the Griffith fracture model implies

that the daughter products should have a grain size distribution that follows the form of

eq. (4.5). More recent numerical simulations and laboratory experiments have shown that

the value of the exponent depends on the mechanism of fracture (i.e. grinding, collision,

or expansive explosion) and the impact energy (Kun and Herrmann, 1999; Astrom et al.,

2004; Kok , 2011). However, none of these studies examined the low-energy limit of chipping

and abrasion that is relevant for bed load transport. The scaling exponent of 2.5 for the

daughter products of these binary collision experiments is surprisingly robust across a range

of rock types, indicating a commonality in the failure modes of these different materials

under the energies examined. The exponent is also within the range of values reported from

studies of brittle fracture fragmentation. We tentatively suggest that brittle fracture is the

mechanism that creates the daughter products of abrasion in our experiments. However,

it appears that fragmentation is confined to a skin depth on the order of a few hundred

microns. Examination of SEM images reveals an apparent damage zone for each examined
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particle, which we have attempted to quantify crudely by tracing identified cracks. Data

are insufficient to attribute the maximum observed particle size of daughter products to this

identified damage zone, but the agreement in terms of order of magnitude is encouraging.

Whether this damage zone is mechanically related to an attenuation depth of impact energy,

or arises simply as a geometric consequence of crack growth inward from the surface, cannot

be determined. As for the lower size limit in the daughter products, an obvious candidate

would be the size of constituent particles in each rock type; i.e., sand grains for the sandstone

or clay particles for the brick. Although we could not resolve the finest particles owing to

loss, it is clear that fragmentation through constituent particles occurs. The determinant

of the lower size limit remains unknown.

4.5. Conclusion

The results of this laboratory investigation suggest that the main consequences of fluvial

abrasion are encapsulated in two “universal” relations. First, we verified the linear abrasion

law for energies and particle sizes associated with fluvial transport. In doing so, we have

shown which material properties control the amount of mass loss per unit energy, providing a

mechanistic underpinning to abrasion “Susceptibility” (Anderson, 1986) and helping guide

researchers regarding how to characterize lithology. Second, the grain size distributions

for daughter products appear to suggest that brittle fracture creates fragmentation over

a restricted skin depth, which has been correlated to maximum particle size. However,

more theoretical work is necessary to understand the underlying mechanics of fracture and

damage. In addition, we have identified a possible shape control on abrasion rate in the

initial stage where particles are very angular, which is intriguing from a mechanics point

of view, but is likely irrelevant in nature as the effect is only manifest when corners are

exceedingly sharp.

Our experiments have shown that material properties can be accounted for reasonably

simply, however results cannot be scaled directly to the field until constant C1 is understood.

We hypothesize that this coefficient is primarily controlled by the details of the collision
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process, which determine how much impact energy contributes to damage as opposed to

friction or rebound of the target. Once C1 is resolved, one may use a mechanistic model

of bed load collision energy and frequency to estimate abrasion rates in natural rivers. If

the grain size distributions of daughter products are indeed universal, they could also be

used to estimate the quantities of sand, silt and dust that result from abrasion by bed load

transport. If the results of Domokos et al. (2014) and (Litwin Miller et al., in review) are

correct that up to 50% of a pebble’s mass is lost during transport downstream, significant

quantities of these fine grains are produced in natural rivers.
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a)

b)

c)

Figure 4.1: Schematic of experimental set-up. (a) Front view drawing depicting binary
collisions double-pendulum apparatus. (b) Close-up drawing illustrating how grains impact
during collision. The impacting grain is raised then released, colliding with the stationary
target grain. Both grains are able to rotate freely. (c) Picture of set-up with brick clasts.
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Figure 4.2: Randomness test for collision rotation. Plot showing the histogram of impact
locations for impacting and target grains. Peaks correspond to corners of the grains. Inset
shows plane view of rock with labeled location of x = 0 at one of the corners.
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brick quartz diorite sandstone schist volcaniclastic

Figure 4.3: Images of samples. Images of all lithologies used in the experiment. Images
taken at the end of the experiment so there is noticeable rounding of the edges at the impact
zone.
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Figure 4.4: Thin section preparation and SEM images. (a) Schematic drawing showing
location in grain where thin sections were made. (b) SEM image of quartz diorite. (c) SEM
image of volcaniclastic rock.
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Figure 4.5: Abrasion mass loss curves. (a) Plot of total cumulative mass loss versus cu-
mulative impact energy for each set of rocks. (b) Plot of total cumulative mass loss minus
y-intercept, b, from linear fits to raw data in (a) versus cumulative impact energy multiplied
by value of fit slope. Inset for both (a) and (b) displays plots with log-log axes.
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Figure 4.6: Abrasion rate for bricks with different collision energies. Plot of total cumulative
mass abraded versus cumulative impact energy for three sets of brick with different masses.
Inset displays plot of average mass abraded per impact versus average energy per impact.
Each data point corresponds to a separate set of bricks.
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Figure 4.7: Normalization of slope and intercept. (a) Plot of slope (k) from linear fits to
raw mass curves versus Abrasion Number. All data points based on measured values of
material properties, while grey brackets (for quartz diorite and volcaniclastic) use range of
values for Youngs modulus from the literature. (b) Plot of y-intercept from linear fits to
raw mass curves versus initial mass of both impacting and target grains. This plot excludes
sandstone and schist because of fragmentation events. (c) Plot showing change in mass
fraction (left axis) and maximum curvature (right axis) versus cumulative impact energy.
They both transition from a high rate of change to a slower one at M/M0 = 0.0018.
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Figure 4.10: Grain size distributions of products of abrasion. (a) Plot of number distri-
bution of grain size from particle analyzer (solid circles) and sieving (circles with black
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denotes expectation from brittle fragmentation of power law with exponent -2.

86



Sample Lithology Density Tensile Str. Youngs Mod. Int. Mass Impact Energy
ρ [kg/m3] σt [MPa] Y [GPa] M0 [g] Ei [j]

B1 brick 2072 7.5 14 490 0.159
B2 brick 2072 7.5 14 394 0.148
B4 brick 2072 7.5 14 369 0.112
B5 brick 2072 7.5 14 734 0.213
B6 brick 2072 7.5 14 133 0.036

QD1 quartz diortie 2704 16.9 20-70 167 0.090
QD2 quartz diorite 2704 16.9 20-70 315 0.148
SS1 sandstone 2330 5.28 10 636 0.179
S1 schist 2667 20.5 7 381 0.091

VC1 volcaniclastic 2672 6.63 5-50 229 0.052

Table 4.1: Table listing measured material properties and experimental conditions for each
set of samples
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CHAPTER 5 : Summary and Conclusions

5.1. Summary

This dissertation reports on the mechanisms that produce downstream grain size patterns

in fluvial systems and discusses its consequences on channel morphology. Whether abrasion

or sorting, both of these processes illustrate how the physics of sediment transport play an

important role in shaping the natural environment. The chapters of this dissertation aim

to provide links between the underlying physics, active processes, and observable quantities

in order to create a complete description of grain size trends in rivers.

Chapter 2 investigated sorting patterns on an alluvial fan. In the upper gravel portion

of the fan, we found that mean grain size and standard deviation of grain size do not

decline downstream at the same rate, as expected from the self-similar profiles of Fedele

and Paola (2007). Instead gravel sorting converges to a limit of equal mobility where a range

of the grain size distribution can be transported under the same flow conditions (Parker

and Klingeman, 1982; Wiberg and Smith, 1987). Further downfan, we found that sand

sorting from gravel to produce the well-known feature of the gravel-sand transition (Smith

and Ferguson, 1995; Cui and Parker , 1998; Knighton, 1999; Ferguson, 2003) is self-similar

in form. Downstream surface sand fraction profiles from two field sites and a laboratory

experiment collapse to a single curve when downstream distance is normalized by the length

of the upstream gravel reach, suggesting that the transition stretches as the size of the river

increases. A two-fraction transport model can explain the segregation of sand from gravel

(Wilcock and Kenworthy , 2002), however, the self-similarity of these profiles suggest that

a universal transport mechanism controls the overall channel length of this sorting feature.

More generally, this work demonstrated that threshold transport and equal mobility control

sorting patterns on alluvial fans.

Chapter 3 examined the effects of both abrasion and sorting throughout an entire length

of a river by tracking the evolution of pebble size and shape, which provided the first
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field verification of 2-phase abrasion theory (Domokos et al., 2014). We found phase I,

marked by rapid mass loss and shape change as the edges of the pebbles got worn away

until it was completely convex, occurred quickly in the headwater stream over a distance

of a few kilometers from the sediment supply. Slower phase II happened over the longer

distances of the mainstem of the river as the pebble gradually reduced in axes dimensions

while approaching a more spherical shape. Numerical model results showed that abrasion

alone could not account for the total observed decrease in grain size while selective sorting

could not account for observed changes in pebble shape, suggesting that both processes

are responsible for observed downstream pebble trends. Finally, we found that as a pebble

travels through this watershed, it will lose approximately 38% of its total volume due to

abrasion, which has implications for fine sediment production (Jerolmack and Brzinski ,

2010).

In Chapter 4, we conducted laboratory experiments to determine the energy scaling of

abrasion rates of different lithologies of rocks by looking at single collision events between

two pebbles. We found that the amount of mass removed during abrasion scales linearly with

impact energy. Through a dimensional analysis (Buckingham, 1914), we normalized impact

energy by material properties specific to each rock-type and found that this normalization

produced a collapse of the abrasion data, indicating that material properties determine

the magnitude of the abrasion rate. Scanning electron microscope images of the abraded

pebbles used in the experiments, showed a zone of damage at the rocks surface, suggesting

that impact energy is attenuated over this length. From the grain size characterization of

the products of abrasion collected from these binary collision experiments, we found that

they exhibit a Weibull distribution, as expected from brittle fracture theory (Brown and

Wohletz , 1995; Kok , 2011), implying that the same mechanics responsible for high energy

fragmentation (Gilvarry , 1961; Oddershede et al., 1993; Astrom et al., 2004; Astrom, 2006)

may be applied to low energy abrasion.

The results of this dissertation demonstrate that sediment interactions during transport
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drive grain size trends. For sorting, hiding and protruding effects caused by the relative

sizes of grains will either limit grain sorting, as is the case of equal mobility, or enhance

segregation, as is the case for sand and gravel producing an abrupt transition. For abrasion,

collisions between saltating grains during bedload transport provide the required energy to

remove mass. The research in these chapters develop the links between sediment transport

and the processes that produce grain size patterns, which have widespread implications on

channel morphology.

5.2. Implications and Future Prospects

5.2.1. Specific Implications and Future Work

This section describes the implications of the work described in this dissertation, as well

as its limitations and future work that arises from the results. Because of its ease of field

measurement, the grain size of particles in a river is one of the most common quantifiable

variables in fluvial systems (Leopold et al., 1957), so an understanding of what controls its

value and in turn how it controls the surrounding landscape is necessary for describing the

natural environment.

On Dog Canyon alluvial fan (Chapter 2) we observed that the river has a finite length

over which gravel sorting approaches a limit based on a state of equal mobility where the

effects of local and system-wide grain size variance are balanced (Fedele and Paola, 2007).

However, this work was completed in the highly out-of-equilibrium channel of an alluvial

fan with large amounts of sand deposition not permitting the gravel sorting to reach its

steady state. In order to generalize this result to other systems, additional fieldwork and

experiments tracking changes in grain size distributions near their sediment source are

needed to describe the manner to which gravel sorts. Furthermore, the self-similarity of the

surface sand fraction profiles implies that transport conditions control the length over which

sand sorts from gravel. This result prompts the development of an analytical framework to

describe the gravel-sand transition.
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The research in Puerto Rico not only provides the first field evidence of 2-phase abrasion,

but also offers new methods and measuring techniques, through the use of simple hand

and image-based shape descriptors, to observe the effects of abrasion in the field (Chapter

3). Also, through numerical modeling using the Puerto Rico data, we learn that selective

sorting is likely the dominant contributing process to downstream changes in measured

median pebble axis. Although the Mameyes river does not have a single point source of

sediment, we were still able to see strong trends in shape and size. To make the results

more robust, future work can incorporate the effects of a spatially varying sediment supply

so that it may be applied to more widespread river systems.

Finally, the work on the abrasion due to binary collisions of grains implies that energy and

material properties are also controlling factors determining abrasion rates of river (Chapter

4). Most importantly from this work is the development of the “Abrasion Number” (A),

which describes how abrasion rates vary by lithology. The next step in this work is to

see if the results for the single collision of two grains hold for multiple collisions of many

grains by conducting tumbling mill experiments. We designed a tumbling mill one single

grain diameter in width so that the experiment will be essentially 2-dimensional. With

a high-speed camera mounted in front of a clear faceplate, we can characterize all of the

collision energies between the grains. From this experiment we can extend the work from

the binary collision experiments. Once we have a complete understanding of the roles of

impact energy and lithology have on abrasion rates, we can apply the concept to the field

to make estimates of abrasion rates.

5.2.2. Broad Prospects

One thing that is required for both size selective sorting and abrasion to be effective is sed-

iment transport. In selective sorting, it is the differential transport of sediment that causes

large grains to deposit while smaller grains move further downstream, thus segregating them

by size (Paola et al., 1992; Ferguson et al., 1996; Gasparini et al., 1999). In abrasion, bed-

load transport provides the collisions that drive mass loss (Wentworth, 1919; Kuenen, 1956;
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Sneed and Folk , 1958; Parker , 1991; Kodama, 1994a; Lewin and Brewer , 2002). Therefore,

to make the results of this dissertation applicable to natural settings, we need a complete

understanding of sediment transport. Although there is a whole field of study devoted to

sediment transport, there are still high levels of uncertainty in quantifying transport rates

(Wilcock , 2001). For example, in determining bedload transport rates, effects of channel

slope (Mueller et al., 2005; Lamb et al., 2008) and bed roughness (Wiberg and Smith, 1987;

Wilcock and Crowe, 2003; Yager et al., 2012) can lead to discrepancies between calculated

and measured values. These inconsistencies usually stem from the difficulty in determining

the critical Shield’s stress for the threshold of motion (Carling , 1983; Ferguson, 1994). How-

ever, recent work using tracer particles has shown that quasi-steady flow approximations

are acceptable for modeling long timescale river processes (Phillips et al., 2013). Future

studies need to determine the level of detail in modeling sediment transport necessary for

linking the processes of size selective sorting and abrasion to field settings.

Another important concept in fluvial systems is the idea of scale, both spatial and temporal

(Paola et al., 2009). Some features in the landscape may be scale invariant, meaning their

form does not change as the system size changes, and others are scale dependent, meaning

they are controlled by system size (Hallet , 1990). We observe scale invariance in many of

the results of this dissertation. The self-similar sand fraction profiles suggest that the length

of the gravel-sand transition merely stretches as the size of the river increases (Chapter 2).

That is to say, the ratio of the length of the gravel-sand transition to the length of the entire

river is constant and therefore scale invariant. From the binary collision experiments, we find

that mass loss from abrasion scales linearly with impact energy producing a constant rate of

abrasion (Chapter 4). The scaling parameter, (A), based on material properties, collapses

mass loss curves across different lithologies, signifying that abrasion is a universal process.

Additionally, the grain size distributions of the daughter products exhibit power law scaling,

indicating scale invariance (Chapter 4). Recently Paola et al. (2009) advocated for research

to focus on understanding the scale independence of natural processes and features, like the

ones in this dissertation, to make extrapolating results from the laboratory to the field more
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straightforward. In my future work, I will be examining the effects of scaling on laboratory

experiments that reproduce features in the landscape at a fraction of the size and in a

fraction of the time than their natural counterparts.

Ultimately, the combined results of all the research in this dissertation have implications

on channel structure and evolution. Grain size exerts a strong control on channel gradient

and cross-stream geometry (Gasparini et al., 2004). As in the case of the gravel-sand

transition, sorting segregates the two-grain population while the river becomes shallower in

slope and wider and deeper in cross-section, transitioning its geometry from a gravel-bedded

river adjusted to transport bedload (Parker , 1978) to a sandy river adjusted to transport

suspended load (Parker , 1978). However, it is not known whether grain size produces the

change in channel slope and geometry or vice-versa; or perhaps some more complicated

feedback between them. Previous work using numerical models have shown that grain

size changes drive channel concavity and slope (Snow and Slingerland , 1987; Sinha and

Parker , 1996; Morris and Williams, 1997). On the other hand, equilibrium channel theory

suggests a feedback between grain size, threshold entrainment stress, and bankfull channel

depth (Parker , 1978). More work is needed to compare the adjustment timescales between

grain size, channel geometry, and channel gradient to elucidate the connections between

the evolution of these properties.

93



BIBLIOGRAPHY

Abbott, J. E., and J. R. D. Francis (1977), Saltation and Suspension Trajectories of Solid
Grains in a Water Stream, Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, 284 (1321), 225–254, doi:10.1098/rsta.1977.0009.

Adams, J. (1978), Data for New Zealand pebble abrasion studies, New Zealand Journal of
Science, 21, 607610.

Adams, J. (1979), Wear of unsound pebbles in river headwaters., Science (New York, N.Y.),
203 (4376), 171–2, doi:10.1126/science.203.4376.171.

Anderson, R. S. (1986), Erosion profiles due to particles entrained by wind: Application
of an eolian sediment-transport model, Geological Society of America Bulletin, 97 (10),
1270, doi:10.1130/0016-7606(1986)97〈1270:EPDTPE〉2.0.CO;2.

Andrews, B. (1999), Gauss curvature flow: the fate of the rolling stones, Inventiones Math-
ematicae, 138 (1), 151–161, doi:10.1007/s002220050344.

Apuani, T., C. Corazzato, A. Cancelli, and A. Tibaldi (2005), Physical and mechanical
properties of rock masses at Stromboli: a dataset for volcano instability evaluation, Bull
Eng Geol Environ, 64 (4), 419–431, doi:10.1007/s10064-005-0007-0.

Astrom, J. A. (2006), Statistical models of brittle fragmentation, Advances in Physics,
55 (3-4), 247–278, doi:10.1080/00018730600731907.

Astrom, J. A., F. Ouchterlony, R. P. Linna, and J. Timonen (2004), Universal Dy-
namic Fragmentation in D Dimensions, Phys. Rev. Lett., 92 (24), 245506, doi:10.1103/
PhysRevLett.92.245506.

Attal, M., and J. Lave (2009), Pebble abrasion during fluvial transport: Experimental
results and implications for the evolution of the sediment load along rivers, J. Geophys.
Res., 114 (F4), F04023, doi:10.1029/2009JF001328.

Attal, M., J. Lave, and J.-P. Masson (2006), New Facility to Study River Abrasion Processes,
Journal of Hydraulic Engineering, 132 (6), 624–628, doi:10.1061/(ASCE)0733-9429(2006)
132:6(624).

Bitter, J. (1963), A study of erosion phenomena part I, Wear, 6 (1), 5–21, doi:10.1016/
0043-1648(63)90003-6.

Blair, T. C., and J. G. McPherson (1994), Alluvial fans and their natural distinc-
tion from rivers based on morphology, hydraulic processes, sedimentary processes, and
facies assemblages, Journal of Sedimentary Research, 64 (3a), 450–489, doi:10.1306/
D4267DDE-2B26-11D7-8648000102C1865D.

94



Bloore, F. J. (1977), The shape of pebbles, Journal of the International Association for
Mathematical Geology, 9 (2), 113–122, doi:10.1007/BF02312507.

Blott, S. J., and K. Pye (2007), Particle shape: a review and new methods of charac-
terization and classification, Sedimentology, 0 (0), 070921092734002–???, doi:10.1111/j.
1365-3091.2007.00892.x.

Bradley, W. C., R. K. Fahnestock, and E. T. Rowekamp (1972), Coarse Sediment Transport
by Flood Flows on Knik River, Alaska, Geological Society of America Bulletin, 83 (5),
1261–1284, doi:10.1130/0016-7606(1972)83[1261:CSTBFF]2.0.CO;2.

Brewer, P., G. Leeks, and J. Lewin (1992), Direct measurement of in-channel abrasion pro-
cesses, in Erosion and sediment transport monitoring programmes in river basins (Pro-
ceedings of the Oslo Symposium, August 1992), p. 2129.

Briggs, R. P., and E. Aguilar-Cortes (1980), Geologic map of the Fajardo and Icacos:
quadrangles, Puerto Rico, US Geological Survey, Map I-1153, scale, 1 (20,000).

Brown, W. K., and K. H. Wohletz (1995), Derivation of the Weibull distribution based on
physical principles and its connection to the RosinRammler and lognormal distributions,
Journal of Applied Physics, 78 (4), 2758–2763, doi:10.1063/1.360073.

Buckingham, E. (1914), On Physically Similar Systems; Illustrations of the Use of Dimen-
sional Equations, Phys. Rev., 4 (4), 345–376, doi:10.1103/PhysRev.4.345.

Carling, P. A. (1983), Threshold of coarse sediment transport in broad and narrow natural
streams, Earth Surf. Process. Landforms, 8 (1), 1–18, doi:10.1002/esp.3290080102.

Carlson, R., and R. Wilkens (1983), Seismic Crustal Structure and the Elastic Properties
of Rocks Recovered by Drilling in the Philippine Sea, in Geodynamics of the Western
Pacific-Indonesian Region, edited by T. W. C. Hilde and S. Uyeda, pp. 127–136, American
Geophysical Union.

Chatanantavet, P., E. Lajeunesse, G. Parker, L. Malverti, and P. Meunier (2010), Physically
based model of downstream fining in bedrock streams with lateral input, Water Resour.
Res., 46 (2), W02518, doi:10.1029/2008WR007208.

Chow, B. (1991), On Harnack’s inequality and entropy for the gaussian curvature flow,
Communications on Pure and Applied Mathematics, 44 (4), 469–483, doi:10.1002/cpa.
3160440405.

Colombini, M., G. Seminara, and M. Tubino (1987), Finite-amplitude alternate bars, Jour-
nal of Fluid Mechanics, 181, 213–232, doi:10.1017/S0022112087002064.

Cox, E. P. (1927), A method of assigning numerical and percentage values to the degree of
roundness of sand grains, Journal of Paleontology, 1 (3), 179183.

95



Cui, Y., and G. Parker (1998), The arrested gravel front: stable gravel-sand transitions in
rivers Part 2: General numerical solution, Journal of Hydraulic Research, 36 (2), 159–182,
doi:10.1080/00221689809498631.

Culling, W. E. H. (1960), Analytical theory of erosion, The Journal of Geology, p. 336344.

Dade, W. B., and P. F. Friend (1998), Grain-Size, Sediment-Transport Regime, and Channel
Slope in Alluvial Rivers, Journal of Geology, 106, 661–676, doi:10.1086/516052.

Dawson, M. (1988), Sediment size variation in a braided reach of the Sunwapta River,
Alberta, Canada, Earth Surf. Process. Landforms, 13 (7), 599–618, doi:10.1002/esp.
3290130705.

Domokos, G., and G. W. Gibbons (2013), Geometrical and physical models of abrasion,
arXiv preprint arXiv:1307.5633.

Domokos, G., A. A. Sipos, and P. L. Varkonyi (2009), Countinuous and discrete models for
abrasion processes, Architecture, 40 (1), 3–8, doi:10.3311/pp.ar.2009-1.01.

Domokos, G., A. Sipos, T. Szabo, and P. Varkonyi (2010), Pebbles, Shapes, and Equilibria,
Math Geosci, 42 (1), 29–47, doi:10.1007/s11004-009-9250-4.

Domokos, G., A. . Sipos, and T. Szab (2012), The Mechanics of Rocking Stones: Equilibria
on Separated Scales, Math Geosci, 44 (1), 71–89, doi:10.1007/s11004-011-9378-x.

Domokos, G., D. J. Jerolmack, A. Sipos, and A. Torok (2014), How River Rocks Round:
Resolving the Shape-Size Paradox, PLoS ONE, 9 (2), e88657, doi:10.1371/journal.pone.
0088657.

Drake, T. G., R. L. Shreve, W. E. Dietrich, P. J. Whiting, and L. B. Leopold (1988),
Bedload transport of fine gravel observed by motion-picture photography, Journal of
Fluid Mechanics, 192, 193–217, doi:10.1017/S0022112088001831.

Durian, D. J., H. Bideaud, P. Duringer, A. Schroder, F. Thalmann, and C. M. Mar-
ques (2006), What Is in a Pebble Shape?, Phys. Rev. Lett., 97 (2), 028001, doi:
10.1103/PhysRevLett.97.028001.

Fedele, J. J., and C. Paola (2007), Similarity solutions for fluvial sediment fining by selective
deposition, J. Geophys. Res., 112 (F2), F02038, doi:10.1029/2005JF000409.

Ferguson, R., T. Hoey, S. Wathen, and A. Werritty (1996), Field evidence for rapid down-
stream fining of river gravels through selective transport, Geology, 24 (2), 179–182, doi:
10.1130/0091-7613(1996)024〈0179:FEFRDF〉2.3.CO;2.

Ferguson, R. I. (1994), Critical discharge for entrainment of poorly sorted gravel, Earth
Surf. Process. Landforms, 19 (2), 179–186, doi:10.1002/esp.3290190208.

96



Ferguson, R. I. (2003), Emergence of abrupt gravel to sand transitions along rivers through
sorting processes, Geology, 31 (2), 159, doi:10.1130/0091-7613(2003)031〈0159:EOAGTS〉
2.0.CO;2.

Firey, W. J. (1974), Shapes of worn stones, Mathematika, 21 (01), 1, doi:10.1112/
S0025579300005714.

Fletcher, R. C., H. L. Buss, and S. L. Brantley (2006), A spheroidal weathering model
coupling porewater chemistry to soil thicknesses during steady-state denudation, Earth
and Planetary Science Letters, 244 (12), 444–457, doi:10.1016/j.epsl.2006.01.055.

Frings, R. M. (2011), Sedimentary Characteristics of the Gravel-Sand Transition in the
River Rhine, Journal of Sedimentary Research, 81 (1), 52–63, doi:10.2110/jsr.2011.2.

Frolova, Y. V. (2008), Specific features in the composition, structure, and properties of vol-
caniclastic rocks, Moscow Univ. Geol. Bull., 63 (1), 28–37, doi:10.1007/s11969-008-1004-z.

Gage, M. E. (1983), An isoperimetric inequality with applications to curve shortening, Duke
Math. J., 50 (4), 1225–1229, doi:10.1215/S0012-7094-83-05052-4.

Garcia-Martino, A. R., G. S. Warner, F. N. Scatena, and D. L. Civco (1996), Rainfall,
runoff and elevation relationships in the Luquillo Mountains of Puerto Rico, Caribbean
Journal of Science, 32, 413424.

Gasparini, N. M., G. E. Tucker, and R. L. Bras (1999), Downstream fining through selective
particle sorting in an equilibrium drainage network, Geology, 27 (12), 1079, doi:10.1130/
0091-7613(1999)027〈1079:DFTSPS〉2.3.CO;2.

Gasparini, N. M., G. E. Tucker, and R. L. Bras (2004), Network-scale dynamics of grain-size
sorting: implications for downstream fining, stream-profile concavity, and drainage basin
morphology, Earth Surf. Process. Landforms, 29 (4), 401–421, doi:10.1002/esp.1031.

Gilvarry, J. J. (1961), Fracture of Brittle Solids. I. Distribution Function for Fragment
Size in Single Fracture (Theoretical), Journal of Applied Physics, 32 (3), 391 –399, doi:
10.1063/1.1736016.

Gilvarry, J. J., and B. H. Bergstrom (1961), Fracture of Brittle Solids. II. Distribution
Function for Fragment Size in Single Fracture (Experimental), Journal of Applied Physics,
32 (3), 400–410, doi:10.1063/1.1736017.

Griffith, A. A. (1921), The phenomena of rupture and flow in solids, Philosophical trans-
actions of the royal society of london. Series A, containing papers of a mathematical or
physical character, 221, 163198.

Hallet, B. (1990), Spatial self-organization in geomorphology: from periodic bedforms and
patterned ground to scale-invariant topography, Earth-Science Reviews, 29 (14), 57–75,
doi:10.1016/0012-8252(0)90028-T.

97



Hassan, M. A., M. Church, and P. J. Ashworth (1992), Virtual rate and mean distance of
travel of individual clasts in gravel-bed channels, Earth Surf. Process. Landforms, 17 (6),
617–627, doi:10.1002/esp.3290170607.

Heartsill-Scalley, T., F. N. Scatena, C. Estrada, W. H. McDowell, and A. E. Lugo (2007),
Disturbance and long-term patterns of rainfall and throughfall nutrient fluxes in a
subtropical wet forest in Puerto Rico, Journal of Hydrology, 333 (24), 472–485, doi:
10.1016/j.jhydrol.2006.09.019.

Herrick, C. L. (1900), The geology of the white sands of New Mexico, The Journal of
Geology, 8 (2), 112128.

Hirano, M. (1968), A mathematical model of slope development, Journal of Geosciences,
Osaka City University, 11, 1352.

Hodge, R. A., T. B. Hoey, and L. S. Sklar (2011), Bed load transport in bedrock rivers:
The role of sediment cover in grain entrainment, translation, and deposition, J. Geophys.
Res., 116 (F4), F04028, doi:10.1029/2011JF002032.

Hoey, T. B., and B. J. Bluck (1999), Identifying the controls over downstream fining of river
gravels, Journal of Sedimentary Research, 69 (1), 40–50, doi:10.2110/jsr.69.40.

Hooke, R. L. (1967), Processes on arid-region alluvial fans, The Journal of Geology, p.
438460.

Howard, A. D. (1980), Thresholds in river regimes, Thresholds in geomorphology, p. 227258.

Howard, A. D. (1998), Long Profile Development of Bedrock Channels: Interaction of
Weathering, Mass Wasting, Bed Erosion, and Sediment Transport, in Rivers Over Rock:
Fluvial Processes in Bedrock Channels, edited by K. J. Tinkler and E. E. Wohl, pp.
297–319, American Geophysical Union.

Hughes, D. S., and H. J. Jones (1950), Variation of Elastic Moduli of Igneous Rocks with
Pressure and Temperature, Geological Society of America Bulletin, 61 (8), 843–856, doi:
10.1130/0016-7606(1950)61[843:VOEMOI]2.0.CO;2.

Jerolmack, D. J., and T. A. Brzinski (2010), Equivalence of abrupt grain-size transitions in
alluvial rivers and eolian sand seas: A hypothesis, Geology, 38 (8), 719–722, doi:10.1130/
G30922.1.

Jerolmack, D. J., M. D. Reitz, and R. L. Martin (2011), Sorting out abrasion in a gypsum
dune field, Journal of Geophysical Research, 116 (F2), doi:10.1029/2010JF001821.

Kafui, K. D., and C. Thornton (1993), Computer simulated impact of agglomerates, Pow-
ders and Grains, 93, 401406.

Kahraman, S. (2001), Evaluation of simple methods for assessing the uniaxial compressive

98



strength of rock, International Journal of Rock Mechanics and Mining Sciences, 38 (7),
981–994, doi:10.1016/S1365-1609(01)00039-9.

Kennedy, J. F. (1969), The Formation of Sediment Ripples, Dunes, and Antidunes, Annual
Review of Fluid Mechanics, 1 (1), 147–168, doi:10.1146/annurev.fl.01.010169.001051.

Knight, J. (2008), The environmental significance of ventifacts: A critical review, Earth-
Science Reviews, 86 (14), 89–105, doi:10.1016/j.earscirev.2007.08.003.

Knighton, A. (1999), The gravelsand transition in a disturbed catchment, Geomorphology,
27 (3-4), 325–341, doi:10.1016/S0169-555X(98)00078-6.

Kodama, Y. (1991), Effect of abrasion on downstream gravel-size reduction in the Watarase
river, Japan : field work and laboratory experiment.

Kodama, Y. (1994a), Experimental study of abrasion and its role in producing downstream
fining in gravel-bed rivers, Journal of Sedimentary Research, 64 (1a), 76.

Kodama, Y. (1994b), Downstream Changes in the Lithology and Grain Size of Flu-
vial Gravels, the Watarase River, Japan: Evidence of the Role of Abrasion in
Downstream Fining, SEPM Journal of Sedimentary Research, Vol. 64A, doi:10.1306/
D4267D0C-2B26-11D7-8648000102C1865D.

Kok, J. F. (2011), A Scaling Theory for the Size Distribution of Emitted Dust Aerosols
Suggests Climate Models Underestimate the Size of the Global Dust Cycle, PNAS, 108 (3),
1016–1021, doi:10.1073/pnas.1014798108.

Kondolf, G. M., and M. G. Wolman (1993), The sizes of salmonid spawning gravels, Water
Resources Research, 29 (7), 22752285.

Krumbein, W. C. (1941), Measurement and geological significance of shape and roundness
of sedimentary particles, Journal of Sedimentary Research, 11 (2), 6472.

Kuenen, P. H. (1956), Experimental abrasion of pebbles: 2. Rolling by current, The Journal
of Geology, 64 (4), 336368.

Kun, F., and H. J. Herrmann (1999), Transition from damage to fragmentation in collision
of solids, Phys. Rev. E, 59 (3), 2623–2632, doi:10.1103/PhysRevE.59.2623.

Lajeunesse, E., L. Malverti, and F. Charru (2010), Bed load transport in turbulent flow
at the grain scale: Experiments and modeling, J. Geophys. Res., 115 (F4), F04001, doi:
10.1029/2009JF001628.

Lamb, M. P., W. E. Dietrich, and J. G. Venditti (2008), Is the critical Shields stress for
incipient sediment motion dependent on channel-bed slope?, Journal of Geophysical Re-
search: Earth Surface (20032012), 113 (F2).

99



Le Bouteiller, C., and M. Naaim (2011), Aggregate breakage under dynamic loading, Gran-
ular Matter, 13 (4), 385–393, doi:10.1007/s10035-010-0235-2.

Leopold, L. B. (1992), Sediment size that determines channel morphology, Dynamics of
gravel-bed rivers, p. 297311.

Leopold, L. B., M. G. Wolman, M. G. Wolman, and M. G. Wolman (1957), River channel
patterns: braided, meandering, and straight, US Government Printing Office Washington,
DC.

Leopold, L. B., M. G. Wolman, and J. P. Miller (1964), Fluvial process in geomorphology,
WH Freeman and Company.

Lewin, J., and P. A. Brewer (2002), Laboratory simulation of clast abrasion, Earth Surface
Processes and Landforms, 27 (2), 145–164, doi:10.1002/esp.306.

Lisle, T. E. (1989), Sediment transport and resulting deposition in spawning gravels, north
coastal California, Water resources research, 25 (6), 13031319.
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