SHALLOW STRATIGRAPHIC CONTROLS ON SURFACE WATER-GROUNDWATER MIXING AND GEOCHEMICAL FATE IN
THE BENTHIC ZONE OF AN ESTUARY
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HOW DOES STRATIGRAPHY INFLUENCE SHALLOW SURFACE WATER-
GROUNDWATER MIXING AND THE FATE OF REDOX-SENSITIVE
SOLUTES DISCHARGING TO AN ESTUARY?

@ SITE: INDIAN RIVER BAY, DELAWARE (USA)

Left: Fresh groundwater discharges rapidly near the
shoreline between paleovaleys (in interfluves) and
broadly along paleovalley margins farther from shore
(seepage data courtesy of Chris Russoniello). Transects
for shallow benthic profiles target the interfiuve and
paleovalley margins.
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INTERFLUVE: Nearshore, fresh groundwater discharge is greatest, and bulk conductivity
is low at each sampling depth. The sharp gradient in bulk conductivity at the sediment-
water interface nearshore indicates that vertical transport is dominated by advection. Fresh
groundwater discharge decays rapidly with distance offshore (10-20 m), and bulk
conductivity increases at all depths.
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Left: Sh

view beneath paleovalley.
An impermeable peat
layer fills the top of the
paleovalley and prevents
fresh groundwater
discharge near shore.

Left: Shore-parallel view.
Fresh groundwater
upwells along paleovalley
margins farther offshore.

Above: Sh view beneath
interfluve. Fresh groundwater discharge is
greatest near shore.

Shallow stratigraphy can affect geochemical
processes near the sediment-water interface
through three mechanisms:

1) vertical fluid fluxes
(net and gross)

2) deeper groundwater
chemistry (associated
with lateral flow paths)
3) local, shallow
reactions

METHODS: RESISTIVITY PROBE, PORE WATER SAMPLES, &

SEEPAGE METERS
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Above: Resistivity probe for profiling bulk
conductivity along transects.

Left: Pore water samples
were extracted from steel dej
tubing with a screened

interval of 3 cm using a

peristaltic pump.
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t: Seepage meters were
ployed at 10-m intervals
along transects.

Right: Bags were pre-filled with
2L of water and deployed for 2
hours. Final masses and con-
ductivities were recorded to
determine fluxes of fresh and
saline groundwater.
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PALEOVALLEY (SHORE-PERPENDICULAR): Discharging groundwater is
saline, and shallow bulk conductivity is generally elevated. Broad vertical
gradients in conductivity suggest that difusion and dispersion strongly
influence transport across the sediment.water interface. No consistent trends
in discharge or bulk conductivity occur parallel to the paleochannel margin.
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PALEOVALLEY (SHORE-PARALLEL): Within shallow paleovaley deposits (peat),
bulk conductivity is elevated, groundwater discharge rates are low, and diffusion
dominates transport across the sediment-water interface. Maximum fresh
groundwater discharge occurs beyond the paleovalley margin, where shallow bulk
conductivity is low. Moderate vertical gradients in bulk conductivity near the margin
suggest that advection and dispersion both influence transport,
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SULFIDE.

1) PALEOVALLEYS INFLUENCE THE RATE OF SUBMARINE GROUNDWATER DISCHARGE TO ESTUARIES AND THE BALANCE OF ADVECTIVE-DISPER-
SIVE TRANSPORT ACROSS THE SEDIMENT-WATER INTERFACE.
2) BETWEEN PALEOVALLEYS, RAPIDLY DISCHARGING GROUNDWATER TRANSPORTS NITRATE CONSERVATIVELY FROM THE TERRESTRIAL AQUIFER
THROUGH THE BENTHIC LAYER TO THE ESTUARY.

3) IN PALEOVALLEYS, PEAT LIMITS ADVECTIVE SOLUTE TRANSPORT TO THE ESTUARY. PEAT MAY BE A LOCAL SOURCE OF DOC, AMMONIUM, AND

4) BENEATH PALEOVALLEYS, GROUNDWATER FLOWS SLOWLY OVER LONGER DISTANCES, BECOMES MORE REDUCING, AND DISCHARGES
DIFFUSIVELY NEAR PALEOVALLEY MARGINS OFFSHORE. THERE, AMMONIUM AND SULFIDE ARE TRANSPORTED NON-CONSERVATIVELY THROUGH
THE BENTHIC LAYER BEFORE DISCHARGING TO SURFACE WATER.
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