
Procedural chain – Fuzzy logic 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fuzzy logic can be considered as a superset of  conventional (i.e. Boolean) logic that 
has been extended to handle the concept of  partial truth, i.e. truth values between 
"completely true" and "completely false”. 

The key point of  fuzzy logic is to map an input variable to an output variable using, as 
primary mechanism, a list of  if-then statements called rules, through a complex process 
called fuzzy inference. Fuzzy inference is a method that interprets the values in the input 
variable and, based on some set of  rules, assigns values to the output variable. 

This is carried out through a membership function (MF) that is a curve that defines 
how each point in the input variable is mapped to a membership value (or degree of  
membership) between 0 and 1 of  a specific class. 

 
 

 
 

 

 

 

The fuzzy raster layers can be combined together using specific fuzzy operators 
(Bonham-Carter, 1994). Here two different fuzzy rules have been used: fuzzy gamma 
operator and the fuzzy union OR. 

The fuzzy gamma operator is derived by combining fuzzy algebraic sum together with 
fuzzy algebraic product 
 

 

The fuzzy union OR provides output membership values are controlled by the 
maximum values of  any of  the input membership spatial layers, for any particular 
location. 

The gullies fuzzy map is “cleaned” through the use of  mode filter to remove single 
isolated pixels. Iterative buffer analysis allows for removing boundaries pixels “too 
far” (>10-15m) from bottom part and removing bottom pixels “too far” from 
boundaries pixels. All the procedure has been implemented in GRASS GIS. 

Gully volume assessment 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Procedural chain – Image Analysis 
 
 
 
 
 
 
 
 
 
 
 

 
 
 Indices used as gully markers 
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Introduction 
This work is aimed to evaluate the combination of  different simple 
morphometric indices to characterize the morphological properties of  
gullies in a fuzzy logic framework. Such algorithms and methods are applied 
to the Calhoun CZO where many gullies have been observed and mapped in 
previous works and where a very high resolution LiDAR DEM is available. 
The entire procedure tries to successfully automate gully mapping and the 
resulting estimates of  erosion patterns, which characterize the Calhoun 
area. The following objectives may be then identified: 
-  developing and assessing an automated procedural chain of  different 

algorithms to detect gullies based on their morphological characteristics 
retrieved by LiDAR DEM, and 

-  developing and evaluating a method to measure main characteristics of  
gullies (i.e depth and volume).	


Ongoing activities 
•  Field survey to measure some gullies (DGPS Topcon) 
•  This data will be used to calibrate parameters of  the procedural 

chains. 
•  Application of  an alternative method to identify gullies based on 

GEOBIA  (Blaschke et al., 2010). 
•  Comparison of  two methods (pixel-centric vs. GEOBIA). 
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The first step is relative to the four indices derivation (nTPI, cmax, MinMax and 
Vosselman index). All these indices require the definition of  a scale (i.e. the size α or 
the radius r of  the kernel). Particular attention has been paid to the definition of  this 
support scale. 
These indices are usually used in a typical Boolean approach, which consists in defining 
thresholds for each of  the different indices, assigning value one (presence of  gully 
feature) to all the pixels which are above (or under) the threshold and value zero 
(absence of  gully feature) to all the pixels which are under (or above) the threshold and 
merging the information coming from each single index. 
Here an approach alternative to the classical Boolean one has been developed using the 
fuzzy logic approach. This approach allows to combine the different indices and to 
derive a map which provides a sort of  probability that each single pixel is part of  a gully. 

Gully bottom index 
 

TPI Topographic position index (continuous variable) 
The TPI (Gallant and Wilson, 2000) is simply the difference between a cell 
elevation value and the average elevation of  the neighborhood around that 
cell. Positive values mean the cell is higher than its surroundings while 
negative values mean it is lower. Here the TPI has been slightly modified 
through its normalization obtaining the normalized TPI (nTPI). 
 
 
 
 
 
Gully boundary indices 
 

cmax Maximum Profile Curvature (continuous variable) 
The DEM surface is approximated to a bivariate quadratic function in the 
form (Evans 1979): 
 
 
where x, y, and Z are local coordinates, and a to f  are quadratic coefficients, 
assessed using elevation in kernel size of  n x n. 
Evans (1979) suggests two measures of  minimum (concavity) and maximum 
curvature (convexity). Maximum curvature has been adopted as index of  
gully edge since landforms as the gullies correspond to convex slope breaks 
forming ridges and these are related to surface convexity. 
 
 
Here a multiple-scale parameterization proposed by Wood (1996)  by 
generalizing the calculation for different window sizes, is used.  
 
MinMax index (continuous variable) 
MinMax is a focal map algebra function defined by Gallant and Wilson (2000) 
as ER (Elevation Range). This filter calculates the difference between the 
maximum and minimum values of  elevation z present in a moving kernel, with 
size equal to α, and stores the result into the central pixel of  this kernel. 
This continuous index has been used since high values may highlight the 
presence of  strong discontinuities in the terrain surface (i.e. gully edge). 
 
Vosselman index (Boolean variable) 
This index is the outcome of  a filter derived by Vosselman (2000) to detect 
anomalies in the elevation of  a LiDAR dataset due usually to the pulses 
reflected by buildings, trees, and many other objects on top of  the ground 
surface. 
Here this filter, implemented in GRASS GIS, has been used to detect the gully 
boundaries as anomalies of  the terrain.  
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GENERAL INSTRUCTIONS:  
1) Begin by placing the "tpi_jen.avx" file into the ArcView extensions directory 

(../../Av_gis30/Arcview/ext32/).  
2) After starting ArcView, load the extension by clicking on File --> Extensions  , scrolling 

down through the list of available extensions, and then clicking on the checkbox next to the 
extension called "Topographic Position Index."  

3) This extension adds a new menu to your View menu bar called “TPI”.  Within this menu are 
options to create a TPI grid, a Slope Position grid and a Landform Classification grid, as well 
as general options for grid classification, grid standardization and calculating grid and 
neighborhood statistics. 

TOPOGRAPHIC POSITION INDEX:  

DISCUSSION: 
Andrew Weiss presented a very interesting and useful poster at the 2001 ESRI International User 
Conference describing the concept of Topographic Position Index (TPI) and how it could be 
calculated (Weiss 2001; see also Guisan et al. 1999 and Jones et al. 2000).  Using this TPI at 
different scales, plus slope, users can classify the landscape into both slope position (i.e. ridge 
top, valley bottom, mid-slope, etc.) and landform category (i.e. steep narrow canyons, gentle 
valleys, plains, open slopes, mesas, etc.). 

The algorithms are clever and fairly simple.  The TPI is the basis of the classification system and 
is simply the difference between a cell elevation value and the average elevation of the 
neighborhood around that cell.  Positive values mean the cell is higher than its surroundings while 
negative values mean it is lower. 

The degree to which it is higher or lower, plus the slope of the cell, can be used to classify the cell 
into slope position.  If it is significantly higher than the surrounding neighborhood, then it is likely 
to be at or near the top of a hill or ridge.  Significantly low values suggest the cell is at or near the 
bottom of a valley.  TPI values near zero could mean either a flat area or a mid-slope area, so the 
cell slope can be used to distinguish the two. 

 
Scales and Neighborhoods:  TPI is naturally very scale-dependent.  The same point at the crest 
of a mountain range might be considered a ridgetop to a highway construction crew or a flat plain 
to a mouse.  The classifications produced by this extension depend entirely on the scale you use 
to analyze the landscape.  

For example, in the illustration below, TPI is calculated for the same point on the landscape using 
3 different scales.  In each case, the point is located on top of a small hill set inside a larger 
valley.  In Case A, the scale is small enough that the point is at about the same elevation as the 
entire analysis region so the TPI value would be approximately 0.  In Case B, the analysis region 
is big enough to encompass the entire small hill, and the point is consequently much higher than 
its neighbors and has a correspondingly high TPI value.  In Case C, the neighborhood includes 
the hills on either side of the valley, and therefore the point is lower than its neighbors and has a 
negative TPI value. 

3 Methods

3.1 Landform curvature

Evans (1972, 1979, 1980) considers five terrain parameters that may be defined for any
two-dimensional continuous surface. These correspond to groups of 0-, 1st-, and 2nd-order
differentials, where the 1st- and 2nd-order functions have components in the xy and
orthogonal planes. The DTM surface is approximated to a bivariate quadratic function in
the form (Evans 1979):

Z ¼ ax2 þ by2 þ cxyþ dxþ eyþ f ð1Þ

where x, y, and Z are local coordinates, and a to f are quadratic coefficients. The coeffi-
cients in Eq. (1) can be solved within a moving window using simple combinations of
neighboring cells. Other methods have also been proposed for the calculation of the various
terrain parameters (e.g., Horn 1981; Travis et al. 1975; Zevenbergen and Thorne 1987).
However, Evans’ (1979) method is one of the most precise at least for first-order deriv-
atives (Shary et al. 2002). While it might not be the best method for all applications, it
performs well in the presence of elevation errors (Albani et al. 2004; Florinsky 1998). The
standard method to solve the Eq. (1) involves calculating the parameters of a central cell
and its eight neighborhood in a moving 3 9 3 cell window. The purpose of this fitting is to
enable the easy calculation of the first and second derivatives of the surface, and these
values can be used to calculate slope, aspect, and various curvatures. To perform terrain
analysis across a variety of spatial scales, Wood (1996) solved the bi-quadratic equation
using an n 9 n window with a local coordinate system (x, y, z) defined with the origin at
the pixel of interest (central pixel).

For the purpose of this work, we decide to use the landform curvature as a useful tool
to recognize in detail the main geomorphic features related to erosion processes. Cur-
vature is a second spatial derivative of the terrain elevations. It is one of the basic terrain
parameters described by Evans (1979) and is commonly used in digital terrain analysis.
In general, the most appropriate curvature form depends on the nature of the surface
patch being modeled: computational and interpretive simplicity may dictate a single
measure for an entire DTM. The two most frequently calculated forms are profile and
plan curvature (Gallant and Wilson 2000). Profile curvature is the curvature of the
surface in the steepest down-slope direction. It describes the rate of change of slope
along a profile in the surface and may be useful to highlight convex and concave slopes
across the DTM. Plan curvature is the curvature of a contour drawn through the central
pixel. It describes the rate of change of aspect in plan across the surface and may be
useful to define ridges, valleys, and slopes along the side of these features. Since these
two measures involve the calculation of the slope vector, they remain undefined for
quadratic patches with zero gradient (i.e., the planar components d and e are both zero).
In such cases, alternative measures independent of slope and based solely on surface
geometry need to be substituted. Evans (1979) suggests two measures of minimum
(concavity) and maximum curvature (convexity):

Cmax ¼ %a% bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða% bÞ2 þ c2

q
ð2Þ
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 The fuzzy layer showing the degree of  membership to the class of  gullies can be further 
using the techniques of  image edge detection.  
In order to detect edges in a image, there are many functions that look for places in the 
image where the intensity (i.e. pixel values) changes rapidly; in particular some functions 
look for places where the first derivative of  the intensity is larger in magnitude than some 
threshold. Here the Sobel operator has been used. 

The final outcome of  Sobel 
operatore is usually a Boolean 
layer raster where many gaps in 
the lines surrounding the candidate 
gullies can be observed together 
with many small pixel clusters 
scattered in the landscape.  
These linear gaps and isolated 
pixel clusters can be removed 
using morphological operators 
in image analysis (Haralick et 
al., 1988; Haralick and Shapiro, 
1992). 

The most basic morphological operators are dilation and erosion.  
Dilation, which combines two sets using vector addition of  set elements, adds pixels to 
the boundaries of  objects in an image, while erosion, which is the morphological dual to 
dilation and combines two sets using the vector subtraction of  set elements, removes 
pixels on object boundaries. In this case the following sequence of  dilation, erosion and 
filling algorithms have been implemented in MATLAB in order to improve the shape of  
the extracted gullies. 
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Volume assessment 

Original DEM Original DEM with gap (GULLY) 

Pre-gully DEM (after interpolat.) Pre-gully DEM – Original DEM 

Category   Average   Data   # Cells        Centroid             Total 
Number     in clump  Total  in clump   Easting     Northing   Volume 

----------------------------------------------------------------------------- 
       1      3.27m     44052     13478 m2   430544  3831799   44052.32 

----------------------------------------------------------------------------- 
                                                Total Volume =       44052.32 m2 

Gully volume assessment  is carried out, using an approach similar to that employed by 
Daba et al. (2003) and Evans and Lindsay (2010) but through a interpolation algorithm 
more complex than those used by these two works. 
 

a) The creation of  a buffer around the gully perimeter; 
b) The transformation of  pixel values within this buffer in points (x, y, z); 
c) The creation of  a “pre-gully” top surface (only for the area covered by the gully) 
using specific interpolation method (ANUDEM, Hutchinson, 1988; 1989) or RST (spline); 
d) The calculation of  the gully volume as difference between the “pre-gully” top surface 
DEM and the original DEM. 

MEMBERSHIP 
FUNCTION 
S-SHAPE 

Preliminary results 
The LiDAR data was collected, through the CALHOUN 
CZO project., over 2 days (August 5, 2014 - August 6, 
2014). DEM with 1m resolution was obtained for the 
total survey area of  a 13 km x 15 km rectangle (195 
km2) located at 40 km SE of  Spartanburg, SC. 
A first application of  the proposed method has been 
carried out on a 2 km x 2 km area called SUBSET 3 
which encompasses one of  the two gully system 
analyzed by James et al. (2007) – COMP32 GULLY. 
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