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Abstract

Human-induced changes in climate and landscape characteristics are driving the

coupled climate-hydrological-ecological system (CHES) into unchartered territories,

with major implications on natural resource availability and sustainability at both

local and global scales. Given that soil-plant-atmosphere are part of a hydrologic

continuum, the variability and changes in climate may impact hydrological states

and fluxes, which in turn can increase vegetation stress potentially resulting in an

abrupt regime shift in the ecohydrological system. Describing and predicting the

non-linear dynamics of CHES is challenging in part due to uncertainties in the pa-

rameters that describe the system and insufficient understanding of the physical

mechanisms that control these responses. This dissertation strives to bridge these

gaps through synergistic use of data analytics and physically-based modeling so as to

characterize a spectrum of dimensionality, nonlinearity, and stochasticity of CHES

across a range of spatial-temporal scales. Three overarching questions frame the di-

rection and scope of this dissertation: Q1 – how do meteorological conditions affect

groundwater dynamics in forested wetlands? Q2 – how to evaluate forest mortality

risk under long-term climate change, and predict near-term forest mortality? Q3

– how does plant hydraulics regulate plant water use under hydro-climatic stress

across biomes? Addressing these questions will improve the understanding of CHES

dynamics and representations of hydrologic and vegetation dynamics in Earth Sys-

tem Models. The findings and methodologies developed here can be leveraged for
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devising mitigation and adaptation strategies for water resource management and

ecosystem conservation under current and future climate regimes.
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1

Introduction

1.1 Background and motivation

Human-induced changes in climate and land cover are driving the coupled climate-

hydrological-ecological system (CHES) into unchartered territories with existential

implications on natural resource availability and sustainability at both local and

global scales. The Fifth Assessment Report by the Intergovernmental Panel on Cli-

mate Change noted that rising CO2 resulting from anthropogenic emissions has a

first-order influence on ecosystem and hydrological responses (Settele et al., 2015).

At the global scale, CO2 traps infrared radiation and reduces outgoing radiation

from the top of the atmosphere, resulting in warming of the atmosphere. Warming

temperature alters atmospheric humidity, precipitation pattern, and frequency and

duration of extreme events such as storms and droughts (IPCC, 2013), which in turn

changes surface and subsurface hydrologic regimes. These impacts are manifested in

rivers and wetlands, affecting their ecological functions (Solomon, 2007; Miao et al.,

2013; Rodriguez-Iturbe et al., 2007). Changes in hydrologic regimes also impact

vegetation dynamics and distribution. Rising CO2 and altered hydroclimatic con-

1



ditions affect vegetation growth, susceptibility and resilience through modulation of

stomatal kinetics and root water uptake. As the dynamics of vegetation cover and

stomatal kinetics control the exchange of water vapor and CO2 between the terres-

trial biosphere and the atmosphere, response of vegetation to hydrometeorogloical

change and variation provides feedbacks to the atmosphere through mediated water,

carbon and energy budgets. As the physical processes controlling these interactions

in the CHES remain far from being thoroughly understood (Council et al., 2012),

uncertainties exist in predicting the concomitant dynamics of hydrological-ecological

systems. Improved understanding and prediction of these dynamics, guided by syn-

ergistic use of diagnostic modeling and empirically based data analytics, are needed

for managing natural resources and sustainability.

Among a range of CHES, freshwater wetlands are considered as one of the most

vulnerable systems under changing climate (Dudgeon et al., 2006). As increasing

evidence has shown, a multitude of ecological processes and functions of wetlands,

including methane emission, nitrogen cycling, flood buffering and vegetation dynam-

ics, are controlled and will be significantly altered by climate-induced changes in

hydrologic regimes (Settele et al., 2015). Thus it is imperative to understand the

impact of inter-annual20 variability of climate conditions on hydrological regimes in

wetlands. This improved understanding will serve as a key to predicting ecological

functions under future climate.

Forested ecosystems are another CHES that are threatened by changing climate.

With projected warming temperature and increasing variability of precipitation pat-

tern, climate-induced water and heat stress to trees are expected to intensify in

the future. A catastrophic impact of the stresses can be tree mortality, which is

being widely observed throughout the globe in recent decades (IPCC, 2013; Allen

et al., 2010). Given that forest covers 30% of the globe’s land surface (Bonan, 2008)

and assimilates around 2.4 Pg carbon per year (Pan et al., 2011), wide-spread tree
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mortality may offset the carbon sink provided by forests, impair a wide variety of

ecological functions, and increase the risk of forest fires. However, prediction of

wide-spread tree mortality and its corresponding impacts remains largely uncertain

(Settele et al., 2015). Thus improved understanding of tree mortality in response to

both long-term climate trends and near-term fluctuations of hydro-climatic stresses

is required to provide critical insights into future dynamics of CHES. Furthermore,

climate-induced stress on forested ecosystems also alters the biosphere-atmosphere

interactions through dynamical response of stomatal kinetics. Plants remove CO2

from the atmosphere via photosynthesis while inevitably losing water into the dry

atmosphere. Such gas exchange provides feedbacks to water-carbon budgets, energy

partitioning, and cloud formation that could in turn modify convective precipitation

(Konings et al., 2010; Manoli et al., 2016). However, how stomatal kinetics responds

to hydro-climatic variation has long been an active research field and remains as

one major uncertainty source of future climate projections (IPCC, 2013). The chal-

lenge arises mainly from complex manifolds of driving forces, interactive mechanisms,

and heterogeneous plant properties lacking extensive measurements. Therefore, a

framework is needed to incorporate improved understanding in biophysical mecha-

nisms and appropriate parameterization to further reduce uncertainties in estimating

biosphere-atmosphere interactions under hydro-climatic stresses.

1.2 Dissertation structure

Here I present four studies concerning the prediction of the impacts of hydro-climatic

variations and changes in hydrographic and ecological features. Specifically, these

chapters address dynamics of hydrologic regime in wetland system, responses of

forest resilience and mortality to climate, and biosphere-atmosphere gas exchange

under hydro-climatic stresses. Physically-based modeling approaches across scales

are combined with advanced statistical analytics to achieve the research goals. The
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objectives and methodologies of each chapter are outlined as follows.

Chapter 2. Meteorological controls on wetland groundwater dynamics

Based on the work by Liu and Kumar (2016), the influence of meteorological con-

ditions on groundwater table (GWT) dynamics at a watershed scale is investigated

in this chapter. As many ecological functions of wetlands are influenced by wet-

periods, i.e., the time interval when GWT near the land surface. Hence, there is

a crucial need to understand the controls on interannual variations of wet-periods.

Given the scarcity of long-term measurements of GWT in wetlands, understanding

variations in wet-periods using a measurement approach alone is challenging. Here a

physically based, fully distributed hydrologic model and hydrologic data are used to

simulate long-term wet-period variations in 10 inland forested wetlands in a south-

eastern US watershed. A Bayesian regression and variable selection framework was

then implemented to (a) evaluate the extent to which the simulated wet-periods can

be estimated and predicted by precipitation and potential evapotranspiration and

(b) infer the relative roles of seasonal Ppt and PET. The prediction performance for

wet-period variations from publicly available meteorological data using the Bayesian

framework is also examined.

Chapter 3. Effects of long-term climate trends on forest mortality risk

Climate-induced forest mortality is being increasingly observed throughout the globe.

Alarmingly, it is expected to exacerbate under climate change due to shifting pre-

cipitation patterns and rising air temperature. However, the impact of concomitant

changes in atmospheric humidity and CO2 concentration through their influence on

stomatal kinetics remains a subject of debate and inquiry. Based on the work by Liu

et al. (2017), this chapter uses a dynamic soil-plant-atmosphere model to analyze

mortality risks associated with hydraulic failure and stomatal closure for 13 temper-

ate and tropical forest biomes across the globe. Using the climate projection for the
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period 2050-2069 by the Coupled Model Intercomparison Project Phase 5 (CMIP5)

models, the mortality risk is evaluated in response to both individual and combined

changes in precipitation amounts and their seasonal distribution, mean air temper-

ature, specific humidity, and atmospheric CO2 concentration. Different responses of

mortality risk among plant functional types (PFTs) are discussed.

Chapter 4. Detection of early warning signal of forest mortality

Apart from the long-term response of forest mortality risk to climate trends dis-

cussed in 3, predicting near-term mortality induced by climate variability remains

challenging, in part due to physiological mechanisms causing mortality are not fully

understood and empirical relations between climatology and mortality are subject

to change. Based on the work by Liu et al. (2019), this chapter proposes to use

the temporal loss of resilience, a phenomenon often detected as a system approaches

a tipping point, as an early warning signal (EWS) to predict the potential for for-

est mortality directly from remotely sensed vegetation dynamics. The time-varying

resilience is evaluated using a Bayesian Dynamic Linear (DLM) model to identify

EWS. The proposed approach is applied to forests in California, USA. The fraction

of area with detected EWS is compared with documented mortality maps from an-

nual aerial surveys conducted by the US Forest Survey. The lead times of EWS with

respect to both reduced greenness, as identified from remotely sensed vegetation in-

dex, and observed mortality are examined. This chapter also evaluates the capability

in predicting spatial-temporal variation of forest mortality using EWS detected with

a range of lead times.

Chapter 5. Influence of plant hydraulics on evapotranspiration

Vegetation-mediated evapotranspiration (ET) plays significant roles in the inter-

actions between the biosphere and the atmosphere. Although plant physiological

dynamics control water transfer through the soil-plant continuum, most land surface
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models simulate ET without explicitly accounting for plant hydraulics but empirically

prescribing restriction function of hydro-climatic stresses based on plant functional

types. While interest in incorporating plant hydraulics in land surface models has

grown, doing so is challenged in part by parameterization difficulties due to the lim-

ited measurements of hydraulic traits and the scale gap between measurements for a

segment and ET for a stand. This chapter investigates the impact of plant hydraulics

on ET estimation. To tackle the challenges related to parameterization, a model-

data fusion approach that integrates a soil-plant continuum model and observed ET

at multiple FLUXNET sites is implemented to retrieve plant and soil hydraulic traits

using a Markov Chain Monte Carlo method. The identified effective hydraulic traits

at a stand scale are compared with available measurements. The performance of

models with and without consideration of plant hydraulics are examined. To further

explore the mechanisms underlying the difference of model performance, sensitivi-

ties of stomatal kinetics to two major hydro-climatic stresses, i.e., soil moisture and

vapor pressure deficit, are also investigated.
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2

Meteorological controls on wetland groundwater
dynamics

2.1 Introduction

Wetlands have recently drawn increased attention in ecosystem science and manage-

ment because of their strong influence on carbon and nitrogen cycles, water quality,

and biodiversity. It is estimated that 18 - 30 % of total global soil carbon is stored

in wetlands despite them covering only 6 - 7 % of the land area (Lehner and Döll,

2004). CH4 emissions from wetlands constitute a significant component of the global

CH4 budget, accounting for 20 - 40 % of the total CH4 emissions (Solomon, 2007;

Bousquet et al., 2006; Ciais et al., 2014). Wetlands also act as nitrogen sinks and

help buffer nutrient contamination of streams (Brinson et al., 1984; Hefting et al.,

2004; Vidon and Hill, 2004). One of the key controls on the aforementioned ecohy-

drological functions of wetlands is the groundwater table (GWT). GWT variations

have been observed to influence the greenhouse gas emissions from wetlands (Moore

and Roulet, 1993; Nykänen et al., 1998; Walter et al., 2001; Chimner and Cooper,

2003; Strack et al., 2004; Bohn et al., 2007; Jungkunst and Fiedler, 2007; Turetsky
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et al., 2008; Zona et al., 2009; Bloom et al., 2010; Miao et al., 2013; Schäfer et al.,

2014). Nitrogen cycling processes such as nitrification, denitrification and ammonifi-

cation, which are triggered by the anoxic conditions in wetland soil, are also known

to be strongly influenced by GWT variations (Regina et al., 1996; Hefting et al.,

2004; Rodriguez-Iturbe et al., 2007; Schilling, 2007; Lohila et al., 2010; Goldberg

et al., 2010). Several studies have also highlighted the role of GWT in influencing

the vegetation distribution (Schilling, 2007; Todd et al., 2010), vegetation community

competition (Schäfer et al., 2014) and transpiration and biomass dynamics (Patten

et al., 2008) in wetlands. In this context, a GWT height of -0.3 m (negative sign

indicates GWT depth below the land surface datum) is often considered as a critical

threshold that influences the eco-hydrological functions of wetlands. For example,

observed CH4 emissions (Figure 2.1) compiled from multiple wetlands situated in

climatically diverse settings (Moore and Knowles, 1989; Moore and Dalva, 1993;

Shannon and White, 1994; MacDonald et al., 1998; Strack et al., 2004; Jungkunst

and Fiedler, 2007; Turetsky et al., 2008) show that CH4 emissions were significantly

larger (p-value ă 0.001) when the GWT was higher than -0.3 m. Hefting et al. (2004)

indicated that ammonification and denitrification mainly occurred when GWT was

higher than -0.3 m while nitrification occured when GWT was lower than -0.3 m

in a riverine wetland. Average root zone depth of many wetland vegetation species

is also around 0.3 m (Lieffers and Rothwell, 1987; Sjörs, 1991; Lewis, 1995), hence

the threshold is likely to influence many wetland vegetation functions by controlling

aerobic/anoxic conditions in the root zone. The significance of the -0.3 m thresh-

old is also obvious from its use as one of the criteria for wetland delineation by US

National Research Council (Lewis, 1995). These studies indicate that for better un-

derstanding and prediction of carbon and nitrogen cycle, and vegetation functions in

wetlands, it is crucial to first evaluate wet-periods i.e. the duration for which GWT

is higher than -0.3 m in wetlands.
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Figure 2.1: Relation between CH4 fluxes and GWT in wetlands. To account for
different magnitudes of CH4 emissions from different wetlands, the data was compiled
by normalizing the CH4 flux rates within each wetland into a [0,1] interval, following
Jungkunst and Fiedler (2007). Blue and green points represent the observations with
GWT above and below -0.3 m respectively.

This study focuses on evaluating interannual variations in start date and duration

of wet-periods in ten inland forested wetlands located in a southeastern US water-

shed. Although temporal variations in GWT are mediated by a number of factors

including microtopography (Frei et al., 2010; Moffett et al., 2010), landscape drainage

network (Todd et al., 2006), land use (Batelaan et al., 2003), soil properties (Vidon

and Hill, 2004) and vegetation (Baird and Maddock, 2005; McCarthy, 2006), these

variations are known to be primarily driven by meteorological conditions (Changnon

et al., 1988; Reich et al., 2002; von Asmuth and Knotters, 2004; Yu et al., 2015) in

inland wetlands. As such, we also explore the role of meteorological conditions on

interannual variations in wet-period characteristics.

Given that observing GWT is time and effort consuming, a majority of the studies

on wetland GWT dynamics have focused on measurements spanning a few months
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or years (Devito et al., 1996; Rosenberry and Winter, 1997; Ferone and Devito, 2004;

Wolski and Savenije, 2006; Todd et al., 2006; Kaplan et al., 2010; Cao et al., 2012).

Clearly, the lack of long term measurements of GWT in wetlands, especially in the

southeastern US, poses a challenge for studying interannual variations in wet-period

characteristics using a measurement approach alone. Moreover, considering that

most of the measurements were usually confined to areas within or close to a single

wetland, the studied GWT dynamics may be site specific and not representative of

the GWT response in other nearby wetlands. To circumvent these challenges, here

we use a distributed integrated hydrologic model, in synergy with publicly available

hydrologic data, to simulate long term GWT dynamics in multiple wetlands within

a southeastern US watershed. The simulated GWT in wetlands are then analyzed

using a Bayesian regression approach to answer four specific questions: (1) What is

the range of interannual variations in wet-periods? (2) To what extent can annual

and seasonal meteorological conditions explain interannual variations in wet-periods,

and do antecedent conditions also impact wet-period variations? (3) What is the

relative seasonal influence of meteorological conditions on wet-period variations? and

(4) How well can the interannual wet-period variations be predicted using seasonal

meteorological conditions?

2.2 Data and methods

2.2.1 Study site

The study was conducted in a southeastern US watershed (area = 325 km2) that

drains into Second Creek near Barber, North Carolina (35.6˝N, 80.7˝, USGS stream-

flow gage 02120780). The watershed was selected because it contains multiple

forested freshwater wetlands within its boundary. The forested wetlands are widespread

across the southeastern US and account for more than 35% of the total forested wet-

land area in the continental US (Bridgham et al., 2006). These wetlands are known
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to provide several ecological functions including carbon sequestration and greenhouse

gas emissions (Schipper and Reddy, 1994; Roden and Wetzel, 1996; Bridgham et al.,

2006), nutrient cycling (Schilling and Lockaby, 2006), and biodiversity (Snodgrass

et al., 2000; Gibbons, 2003). Another reason for the selection of this watershed

was the availability of long term streamflow and groundwater data that could be

used to validate the hydrologic model simulations. Physiography of the watershed is

characterized by valleys and ridges oriented along the southwest-northeast direction.

Watershed elevation ranges from 197m to 331m (Figure 2.2a). Land cover in the

watershed mainly consists of hay/pasture (37.6%), deciduous forest (32.9%), devel-

oped area (6.8%) and evergreen forest (5.4%) (Figure 2.2b). The most common soil

types in the watershed are loam in the riverbed and riparian regions and sandy clay

loam in uplands (Figure 2.2c). The watershed falls in warm temperate climate with

humid and warm summer based on the Koppen-Geiger climate classification (Kottek

et al., 2006). Thirty-year average temperature in the watershed is 15.5˝C and annual

precipitation ranges from 703mm to 1473mm.

2.2.2 Hydrologic model

Model description

A physically-based, fully distributed hydrologic model, Penn State Integrated Hy-

drologic Model (PIHM) (Qu and Duffy, 2007; Kumar et al., 2009a; Kumar, 2009)

was used to simulate coupled hydrologic states and processes. PIHM has been previ-

ously applied at multiple scales and in diverse hydro-climatological settings (Kumar

et al., 2013; Shi et al., 2013; Yu et al., 2014; Chen et al., 2015; Kumar and Duffy,

2015; Yu et al., 2015). The model uses a semi-discrete, finite-volume approach to

discretize the model domain and solve the ordinary differential equations (ODEs) of

multiple states such as surface water depth, soil moisture, groundwater depth and

river stage. Processes simulated in the model include evaporation, transpiration,
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Figure 2.2: (a) Elevation and USGS observation stations, (b) land cover type and
(c) soil type in the Second Creek watershed. Land cover in the watershed include
deciduous forest (DCF), developed low intensity (DVL), developed medium intensity
(DVM), developed open space (DVO) and evergreen forest (EVF). Soil cover symbols
are MUKEY from SURGGO data. CeB2, CeC2, PcB2 and PcC2 indicate sandy
clay loam, ChA indicates loam, EnB and PaD indicatesandy loam, LdB2 and MeB2
indicate clay loam. Refer to Soil Survey Staff (1995) for detailed information.

infiltration, recharge, overland flow, subsurface flow and stream flow. Evapotranspi-

ration in the model is computed using the Penman-Monteith method; overland flow

is modeled using diffusion wave approximation of depth-averaged 2-D St. Venant

equations; subsurface flow is based on Richard’s equation with moving boundary

approximation; and stream channel routing is modeled with depth-averaged 1-D dif-

fusive wave equation (Kumar, 2009). Laterally, hillslopes and rivers are discretized

using triangular grids and line elements, respectively. Vertically, each triangle ele-
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ment consists of four layers: a surface layer, a 0.25 m thick unsaturated layer, an

intermediate unsaturated layer extending downward from 0.25m to the groundwater

table and a groundwater layer. Soil moisture in the two unsaturated layers may vary

from residual moisture to full saturation. As the average combined thickness of soil,

saprolite and the transition zone of regolith has been estimated to be less than 20

meters in the region (Daniel, 1989), a uniform depth of 20 meters was considered

as the lower boundary of the subsurface layer. A spatially adaptive flexible domain

discretization scheme was used to generate the model grid. Given that this study

concerns hydrologic dynamics in wetlands, a hydrographic feature that accounts for

less than 1% of the watershed area, a nested domain discretization (Kumar et al.,

2009b) with a total of 4525 elements was used (Figure 2.4). Because of computational

constraints, we focused our attention on the largest ten wetlands with area ranging

from 57,000 m2 to 167,000 m2. Elements smaller than 10,000m2 were generated in

and around these wetlands to improve the representational accuracy, while larger

elements (smaller than 5000,000m2) were used away from the wetlands to ensure

computation efficiency. Number of discretization elements within the ten wetlands

ranged from 18 to 74, with an average size of 5,710 m2. At each time step, which

was adaptively defined by a numerical ODE solver, ODEs of hydrologic states from

all the elements were assembled and solved simultaneously.

Model parameterization, calibration and validation

To set up the model, we used the 30-meter resolution elevation data from National

Elevation Dataset (NED) (U.S. Geological Survey, 1999), USDA-NRCS Soil Survey

Geographic (SSURGO) soil data (Soil Survey Staff, 1995) and National Land Cover

Dataset (NLCD) land cover data (Homer et al., 2015). Meteorological forcings such

as precipitation, air temperature, relative humidity, wind speed, and radiation were

obtained from North America Land Data Assimilation System Phase 2 (NLDAS-2)
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data (Xia et al., 2012), which has a spatial and temporal resolution of 1{8˝ and an

hour respectively. Ecological and hydrogeological parameters, and meteorological

forcings relevant to the model simulation were automatically extracted from the raw

datasets using an integrated model-GIS framework, PIHMgis (Bhatt et al., 2014).

As the goal of this study is to characterize the role of meteorological controls on

interannual wet-period variations in wetlands, a long term model simulation from

1981 to 2013 was performed. Calibration of model parameters was performed using

the observation data from 1993, which is a normal year with annual precipitation of

1085mm. The calibration year presented a range of meteorological conditions with

large precipitation events (e.g. 57 mm on March 13th, 1993) and long dry periods

with flow lower than the 30th percentile for 112 days. The diverse hydrologic con-

ditions during the calibration period allowed tuning of model parameters such that

the model could capture responses during both high and low flows. The first step

in the calibration process was initialization of the PIHM model with water table at

the land surface. The model was then allowed to relax with no precipitation input

until the stream flow recession rate matched the observed during the low flow period

in summer. The modeled stream flow magnitude was then compared with the ob-

served value. The basis of this comparison is that streamflow during low flow period

is largely due to groundwater base flow, and hence a match between observed and

modeled streamflow would indicate reasonable estimation of the groundwater distri-

bution in summer. During this process, the hydraulic conductivity of the subsur-

face was calibrated uniformly across the entire model domain (Refsgaard and Storm,

1996). Then starting from the derived groundwater table initial condition, the model

was forced with real meteorological inputs. After a one-year warm-up period, the

simulation results were compared against the observed streamflow and groundwater

data at USGS guaging stations USGS 02120780 and USGS 354057080362601 respec-

tively (Figure 1a). Manual calibration of hydrogeological parameters such as soil

14



hydraulic conductivity, macroporosity, and soil drainage parameters, was performed

in this step. Both the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and

the log-transformed NSE (logNSE) were used to evaluate the accuracy of simulation

results, as the two metrics emphasize on high and low flows respectively (Wöhling

et al., 2013). The modeled streamflow within the calibration period matched the

observed data reasonably well, with NSE and logNSE of 0.84 and 0.87 respectively

(Figure 2.3a). The modeled GWT also matched the observation well with NSE of

0.79.

The model simulation was validated using streamflow and GWT data from Novem-

ber 1989 to September 2013. For the 24-year validation period, the daily and monthly

streamflow NSE was 0.42 and 0.61 respectively. The daily and monthly logNSE for

the same period was 0.72 and 0.69. For GWT, the daily and monthly NSE was

0.59 and 0.62 respectively (Figure 2.3b). It should be noted that NSE for the daily

streamflow time series was relatively low, in part because of the underprediction

of streamflow in response to extremely large hurricane storms. This is partially

attributable to NLDAS precipitation input that was used to drive the simulation,

which tends to be smaller than station observations Luo et al. (2003), especially for

large isolated events. If the largest 10 storm events with daily precipitation greater

than 65 mm were discarded, the daily NSE would rise up to 0.58.

To further evaluate the simulation results, we compared the model identified wet-

lands with the National Wetland Inventory (NWI) wetlands (U.S. Fish and Wildlife

Service, 1993). Model detected wetlands were locations with simulated GWT being

higher than -0.3 m for at least two continuous weeks in the growing season every

other year. This delineation procedure conforms with National Research Council’s

definition of wetlands (Lewis, 1995). The growing season used for wetland detection

ranged from March 26th to November 11th in North Carolina (Tiner, 1999). The

wetlands identified by the model correspond well with the overall distribution of NWI
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Figure 2.3: Comparison of modeled and observed streamflow and groundwater
during (a) the calibration period (1993); and (b) the validation period (1989-2013).
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Figure 2.4: Spatial distribution of model detected wetlands and NWI wetlands.

wetlands (Figure 2.4). 58% of the wetland area detected by the model overlapped

with the NWI wetlands. Possible reasons for the mismatch include: (1) inaccurate

representation of microtopography in the model due to coarse grid resolution; (2)

inherent uncertainties in the NWI wetland boundaries (Tiner, 1999; Wardrop et al.,

2007); and (3) incompatibility in the definition of wetland used in NWI and this

study. NWI wetlands were identified from high altitude imagery based on vegetation,

visible hydrology and geography; whereas the model used groundwater dynamics to

detect wetlands. Overall, the model was able to capture the spatial distribution wet-

lands, which is a direct function of the spatio-temporal distribution of groundwater

in the watershed.

Validation of the long term streamflow and GWT series at the gauging stations,
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and the spatial distribution of wetlands, established sufficient confidence in the PIHM

simulation. The simulated GWT series in wetlands were then used to study variations

in wet-period characteristics in response to meteorological conditions.

2.2.3 Quantifying wet-period characteristics and their dependence on meteorological
controls

Defining wet-period characteristics and meteorological controls

In this study, we quantified two wet-period characteristics: wet duration and start

date (Figure 2.5). Wet duration tracks the length of time for which GWT is higher

than the critical threshold. This characteristic could potentially be used to estimate

ecological functions of wetlands (see Section 1). Together with wet duration, start

date evaluates timing of wet-period in each year. These two characteristics can then

be used to define the prevailing environmental conditions during wet-periods, thus

allowing more accurate quantification of ecological functions of wetlands (Christensen

et al., 2003). As GWT in the Second Creek watershed generally increases in autumn

and winter and decreases in spring and summer, start date and wet duration were

extracted for an annual period starting from September 1st to August 31st of the

next year. The annual period, referred hereafter as a ”hydrologic year”, ensures that

the GWT time series contains a single seasonal peak with low GWT at the start

and the end of year. The wetland GWT was quantified as the average across all

the elements within a wetland. Start dates and wet durations were then extracted

for each hydrologic year using a 10-day moving average of daily GWT time series to

smooth-out transient daily fluctuations.

In line with our goals to evaluate the extent to which meteorological controls

alone can be used to estimate and predict interannual wet-period variations in wet-

lands, here we consider Ppt and PET as the primary meteorological variables for our

analysis. The two variables were selected because of their widespread availability and
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Figure 2.5: Typical wetland groundwater table variation within a hydrologic year.

their influence on groundwater dynamics. Ppt and PET are expected to influence the

wetland GWT by modulating groundwater recharge and actual evapotranspiration

(ET) from the wetland and by indirectly controlling the lateral flux exchange with

the neighboring aquifer and streams. Ppt data is readily available for the entire con-

tinental US from national databases such as NCDC and NLDAS, while PET can be

obtained based on Penman-Monteith equation (Penman, 1948; Monteith et al., 1965)

using relevant meteorological data from NCDC and NLDAS datasets. As such, the

methods presented in this paper can be used for other inland wetlands with available

Ppt and PET data. Another notable advantage for choosing these two variables is

that their predictions are generally available from climate models (Hartmann et al.,

2013), which makes it feasible to readily apply the presented methods to understand

the future impacts on wet-period variations.
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A Bayesian regression framework for estimation, variable selection and prediction

In order to estimate and predict wet-period characteristics using the aforementioned

meteorological controls, and to identify the relative seasonal contributions for each

meteorological variable, a Bayesian linear regression and variable selection method

(Mitchell and Beauchamp, 1988; Hoff, 2009) was implemented. The Bayesian re-

gression method assumes a linear relation between a dependent variable yi and a p-

dimensional independent variable xi “ pxi,1, xi,2, . . . , xi,pq, with i “ 1, . . . , n. In this

study, start date and wet duration are used as a dependent variables. The indepen-

dent variable is either Ppt or PET or both. n = 32 corresponds to the length of simu-

lation in years. The relation between y “ py1, y2, . . . , ynq
T andX “ px1,x2, . . . ,xnq

T

is expressed as:

yi “ z1b1xi,1 ` z2b2xi,2 ` . . .` zpbpxi,p ` εi (2.1)

where i “ 1, . . . , n; εi is independent and identically distributed normal noise with

a mean and variance of 0 and σ2 respectively; zj P t0, 1u, j “ 1, . . . , p, indicates

whether variable xi,j is included in the regression; and bj is the regression coefficient

for variable xi,j; T denotes the matrix transpose. In order to estimate y using X,

the parameters of z “ pz1, z2, . . . , zpq
T and b “ pb1, b2, . . . , bpq

T are to be evalu-

ated. Based on the Bayesian regression and variable selection framework shown in

Figure 2.6, posterior distributions of the parameters were derived by combining the

prior distributions (Equation (A3)) and the time series of X and y using Equation

(A7) (see Appendix A for details). Based on the posterior distributions, 104 sam-

ples of each parameter were drawn using Gibbs sampling, one of the most widely

applied Markov Chain Monte Carlo (MCMC) algorithms (Bishop, 2006). The run-

ning average and trace plot of each parameter were checked to ensure convergence.

The first 103 samples of each parameter belonging to the burn-in period were dis-

counted. With the remaining effective samples, the Bayesian regression coefficient
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Figure 2.6: Framework of Bayesian regression and variable selection. s denotes the
generation of samples (s “ 1, 2, . . . , 104).

of β̂ “ pz1b1, z2b2, . . . , zpbpq
T was computed as the average over the remaining sam-

ples, which is a simple case of Bayesian Model Averaging (BMA) (Hoeting et al.,

1999). The Bayesian estimated wet-period characteristics were then computed using

ŷ “Xβ̂.

21



Estimating wet-period characteristics using meteorological controls

Twelve Bayesian regressions were generated for both start date and wet duration.

The first three regressions used annual Ppt, PET and both Ppt and PET as indepen-

dent variables, respectively. The next three regressions used the same independent

variable configuration, but instead of the annual magnitudes, seasonal values of the

variables in the four seasons, i.e., autumn (September to November), winter (Decem-

ber to February), spring (March to May) and summer (June to August), were used.

Because of the inherent memory of the hydrologic system (Shook and Pomeroy, 2011;

Nippgen et al., 2016), it is reasonable to expect that antecedent meteorological con-

ditions may affect wet-period characteristics. To test this hypothesis, the following

three regressions used seasonal magnitudes of Ppt and PET from the four seasons

and an antecedent season from the previous hydrologic year. The antecedent sea-

son used here is the summer right before the start of a hydrologic year. The final

three regressions used two antecedent seasons, i.e., the previous summer and spring

in addition to the four seasons of a hydrologic year. In order to inter-compare the

efficacy of different variable configurations for estimating wet-period variations, we

calculated the coefficient of determination (R2) for each Bayesian regression. The

differences in R2 obtained using only Ppt, only PET, and both of them together

would indicate the relative abilities of these two variables in explaining interannual

wet-period variations. Similarly, comparison of R2 for regressions using either an-

nual or seasonal meteorological variables would highlight the role of seasonal forcings

on wet-period variations. The comparison between R2 obtained with zero, one and

two antecedent seasons would help evaluate the role of antecedent meteorological

conditions on wet-period variations.
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Identifying the controlling seasons that influence wet-period variations

Variable selection, i.e., identification of the relative importance of each independent

variable for capturing variations in the dependent variable, was performed using the

Bayesian framework. Since the framework selects the regression model that is likely

to have high accuracy and small uncertainty, independent variables that contain

more effective information and introduce minimal uncertainty have a greater chance

to be included in the regression model. Under this mechanism, the probability for

each variable to be included, which was approximated by the frequency of zj “

1 (Equation (2.1)) in the posterior effective samples, represents how critical this

variable is in explaining variations of the dependent variable, relative to all the other

independent variables. For example, in the Bayesian regressions that use seasonal

Ppt, the probability of zj “ 1 provides information on which seasonal Ppt is critical

in capturing variations in start date or wet duration. High probability of zj “ 1 for

a variable indicates that it is crucially needed to capture variations in the dependent

variable.

Predicting wet-period characteristics using meteorological controls

The Bayesian approach has been widely applied to make predictions as it gener-

ally improves the confidence in prediction by reducing uncertainties associated with

parameter estimation (Thiemann et al., 2001; Jin et al., 2010). After establishing

the relation between meteorological conditions and wet-period characteristics using

historical data, either from observations or a model, future response of wet-periods

can be predicted using projections of meteorological conditions. Here we evaluated

the accuracy of the Bayesian estimator for predicting wet-period variations. Error

estimates from the method represent the uncertainty in prediction of wet-period

characteristics. The 32-year time series was divided into two parts, a training and

a testing set with 16 data points each. Using the training set, parameters of the
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Bayesian estimator were obtained for each wetland separately. The estimator was

then applied to quantify wet-period variations in the testing set. To minimize bias

in the performance of the testing set due to the choice of the training set, we rotated

the training set for cross validation (Kohavi, 1995). A full cross validation would

involve C32
16 « 6 ˆ 108 trials. To reduce the computational expense, we randomly

generated 1000 mutually exclusive training and testing sets to quantify the errors.

2.3 Results and discussions

2.3.1 Interannual variations in wet-period characteristics

Over the 32 year study period (1981 to 2013), wet-periods generally started in au-

tumn or early winter, reached groundwater peak in late winter or early spring, and

ended in spring or early summer (Figure 2.7). Of the 320 simulation years (= 32

years ˆ 10 wetlands), 75% had wet-periods spanning from 3 to 8 months and 56%

had wet-periods spanning from 4 to 7 months in a year. Median of start date and

wet duration was November 13th and 164 days respectively. The simulated temporal

distribution and duration ranges are mostly consistent with those observed in the

forested wetlands in South Carolina and Louisiana (Megonigal et al., 1997), which

lie in the same climatological classification region as North Carolina (Kottek et al.,

2006)). The results also show that large temporal variations exist in wet-periods

(Figure 2.7). Start date varied by several months or even seasons. For instance in

wetland 1 (Figure 2.7), start date varied from September 5th (in 2003) to March

17th (in 2001), with an average variation range of 194 days and a standard deviation

of 45 days. Also, the wet duration in wetland 1 ranged from 47 days to 275 days

with a standard deviation of 55 days. In wetland 7, wet duration was as long as 196

days in 1992, but was zero in 2001 as the GWT was never higher than -0.3 m during

the year. Since meteorological variables are the primary dynamic forcings that are

expected to drive interannual variations in wet-period variations (Changnon et al.,
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Figure 2.7: Box plot of start date, peak date and end date of wet-periods for the
ten wetlands in Second Creek watershed. The lower and upper edges of the boxes
represent the 25th and 75th percentiles respectively. The whiskers around the boxes
extend to the most extreme data points except for outliers.

1988; Reich et al., 2002; von Asmuth and Knotters, 2004), next we quantify their

influence on wet-period characteristics.

2.3.2 Estimation of wet-period characteristics using meteorological controls

Annual precipitation amount is expected to be inversely related with start date and

positively related with wet-period duration. This is because higher annual precipi-

tation tends to enhance the groundwater recharge, which should result in an earlier

start and longer duration of wet-periods. In contrast, annual PET is expected to be

positively related with start date and inversely related with wet duration, as higher

atmospheric demand for moisture should enhance water losses resulting in a delayed

start date and a shorter wet duration. However, Bayesian regression results using an-

nual precipitation showed that the annual magnitudes only explained a small part of

variation in start date and wet duration, with average R2 of 0.172 and 0.437 respec-

tively for the ten wetlands (Table ??, column (1)). By combining annual PET with
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precipitation in the regression, the average R2 increased marginally to 0.193 and

0.478 (Table ??, column (3)). Remarkably, the average R2 improved significantly

from 0.193 to 0.611 and 0.478 to 0.707 for start date and wet duration respectively

(Table ??, column (3) and (6)), when instead of the annual variables, seasonal Ppt

and PET were used. The significant improvements in R2 indirectly indicate that the

meteorological conditions in each season do not exert uniform impact on interannual

variations of wet-periods.

Combining seasonal PET with seasonal Ppt improved the estimation accuracies

further, with the averageR2 increasing from 0.534 to 0.611 and 0.638 to 0.707 for start

date and wet duration respectively (Table ??, column (4) and (6)). To identify the

conditions under which improvement in the estimation accuracy was large, wetland

characteristics simulated by the PIHM model and those estimated using the Bayesian

regressions with only seasonal Ppt and both seasonal Ppt and PET were compared

(Figure 2.8). The results indicate that PET mainly improved the estimation for

cases with late start date (later than the 150th day) or short wet-period duration

(shorter than 4 months), which are general characteristics of dry years (years with

small precipitation) (Figure 2.8b, d). For example, wet duration for wetland 3 in

2010, a dry year with annual precipitation of 874 mm, was 44 days based on the

PIHM simulated GWT. If only seasonal precipitation was used in the regression, the

duration was overestimated to be 83 days. After incorporating both seasonal PET

and Ppt in the regression, the estimated duration reduced to 58 days (Figure 2.8c).

This improvement could be attributed to the large PET of 1635mm in 2010 (much

higher than the long term average of 1405 mm) that shortened the wet duration.

In fact, more than 70% of all the cases showing late start date or short wet-period

duration were characterized by a simultaneous occurrence of small Ppt (ă 40th

percentile of annual Ppt) and large PET (ą 60th percentile of annual PET). These

results indicate that by considering seasonal PET in addition to seasonal Ppt in the
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Figure 2.8: Performance comparison for estimating the (a) start date and (c)
duration using merely seasonal Ppt, and both seasonal Ppt and seasonal PET (Ppt
& PET). The improvements by PET for the (b) start date and (d) duration were
calculated as |ŷPpt ´ y| ´ |ŷPpt&PET ´ y|, where the ŷPpt, ŷPpt&PET and y are the
estimations by Ppt, Ppt & PET using Bayesian method and the base values simulated
by the hydrologic model respectively. The average improvements over an interval of
30-days were plotted using dark horizontal lines.

Bayesian regression, wet-periods with extremely late start dates and short durations

can be captured more accurately. To sum up, seasonal precipitation was able to

capture most of the variations in start date and wet duration on its own. Further

improvement in estimation accuracy was registered, especially for years with late

start or short wet-period duration, by incorporating seasonal PET in the regressions.

The estimation accuracy improved furthermore when in addition to the four sea-

sons of a hydrologic year, one antecedent season, i.e., the previous summer, was also
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included in the regression (SN + AT1). By considering the antecedent season, av-

erage R2 increased from 0.611 to 0.671 and 0.707 to 0.752 for start date and wet

duration respectively (Table ??, column (6) and (9)). When one more antecedent

season, i.e., the previous spring, was also considered in the regression (SN + AT2),

the R2 only increased marginally by 2.4% (from 0.671 to 0.687) and 0.4% (from

0.752 to 0.755) for start date and wet duration respectively (Table ??, column (9)

and (12)). These results indicate that although wet-periods were influenced by an-

tecedent meteorological conditions, the influence was negligible for meteorological

conditions beyond one antecedent season.

Notably, the estimation accuracies of wet duration in wetland 6 and 9 were rel-

atively low (Table ??, column (9)). This was partly because isolated precipitation

events could raise the GWT height above the -0.3 m threshold in these two wetlands,

thus masking out the effects of seasonal forcings. In wetland 6, bank overflow from a

nearby stream, which inundated the wetland after large autumn and winter storms,

generally raised the GWT above the threshold. In wetland 9, the GWT was well

near the -0.3 m threshold at the beginning of autumn (Figure S1). As such, isolated

precipitation events in autumn were able to lift the GWT above the threshold. Also,

a few weeks without precipitation near the end of the hydrologic year could let the

GWT drop down. These results indicate that the seasonal meteorological conditions

may not capture wet-period variations when: (1) response of GWT to isolated pre-

cipitation events is larger than or comparable to its seasonal variation, or (2) GWT

is close to the critical threshold throughout the year.

28



Table 2.1: R2 for the twelve Bayesian regressions used to estimate start date of the wet-period in the wetlands of Second
Creek watershed. The regressions used either precipitation (Ppt) or potential evapotranspiration (PET) or both Ppt and
PET (Both) as independent variables. Annual magnitudes (AN) of the independent variables or their seasonal magnitudes
in four seasons (SN) with an option to use one (AT1) or two (AT2) antecedent seasons were used for regression.

Start date
AN SN SN+AT1 SN+AT2

WetID Ppt PET Both Ppt PET Both Ppt PET Both Ppt PET Both
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
1 0.097 0.049 0.100 0.517 0.335 0.550 0.710 0.355 0.711 0.724 0.353 0.724
2 0.087 0.099 0.128 0.605 0.500 0.708 0.622 0.498 0.729 0.699 0.498 0.756
3 0.265 0.281 0.353 0.593 0.538 0.693 0.655 0.544 0.708 0.685 0.551 0.712
4 0.218 0.130 0.215 0.661 0.480 0.736 0.706 0.481 0.764 0.723 0.483 0.771
5 0.214 0.075 0.200 0.548 0.340 0.624 0.674 0.350 0.686 0.692 0.350 0.696
6 0.423 0.114 0.422 0.609 0.344 0.648 0.662 0.361 0.700 0.683 0.358 0.703
7 0.144 0.098 0.160 0.461 0.329 0.527 0.623 0.334 0.618 0.655 0.342 0.633
8 0.140 0.076 0.151 0.517 0.366 0.589 0.536 0.382 0.629 0.560 0.391 0.641
9 0.022 0.059 0.071 0.226 0.309 0.363 0.375 0.312 0.444 0.442 0.322 0.500
10 0.109 0.081 0.128 0.599 0.444 0.675 0.714 0.444 0.720 0.721 0.444 0.729

Avg. 0.172 0.106 0.193 0.534 0.399 0.611 0.632 0.409 0.671 0.658 0.409 0.687
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Table 2.2: R2 for the twelve Bayesian regressions used to estimate wet-period duration in the wetlands of Second Creek
watershed. Refer to Table 2.1 for abriviations

Duration
AN SN SN+AT1 SN+AT2

WetID Ppt PET Both Ppt PET Both Ppt PET Both Ppt PET Both
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
1 0.455 0.246 0.457 0.590 0.378 0.609 0.732 0.432 0.749 0.734 0.437 0.751
2 0.367 0.284 0.411 0.720 0.488 0.779 0.752 0.498 0.784 0.760 0.498 0.789
3 0.473 0.513 0.611 0.733 0.682 0.833 0.771 0.688 0.841 0.773 0.701 0.844
4 0.462 0.381 0.507 0.741 0.595 0.806 0.773 0.605 0.815 0.773 0.606 0.817
5 0.440 0.295 0.458 0.677 0.559 0.743 0.715 0.561 0.788 0.715 0.563 0.789
6 0.397 0.143 0.397 0.518 0.418 0.543 0.601 0.429 0.621 0.600 0.430 0.621
7 0.378 0.337 0.412 0.605 0.563 0.673 0.670 0.564 0.752 0.672 0.573 0.758
8 0.472 0.363 0.532 0.819 0.615 0.858 0.826 0.613 0.874 0.828 0.623 0.875
9 0.523 0.345 0.564 0.351 0.319 0.485 0.402 0.353 0.525 0.414 0.354 0.532
10 0.407 0.313 0.432 0.626 0.523 0.740 0.750 0.545 0.773 0.752 0.546 0.775

Avg. 0.437 0.322 0.478 0.638 0.514 0.707 0.699 0.529 0.752 0.702 0.533 0.755
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2.3.3 Relative role of seasons in controlling wet-period characteristics

As indicated in section 3.2, Ppt and PET do not exert a uniform influence throughout

a hydrologic year. Using the SN + AT1 regression configuration, next we identify

the controlling seasons for Ppt and PET in regard to their role in estimation of

wet-period characteristics.

Identifying seasons that control start dates

Among the five seasons considered for regression, start date was found to be domi-

nantly controlled by autumn precipitation, followed by precipitation in the previous

summer. Other seasons had relatively limited influence (Figure 2.9a). As wet-periods

generally started in late autumn or early winter for most wetlands (Figure 2.7), the

seasons that occur before the start date, i.e. the previous summer and autumn, were

naturally detected as controlling seasons. For wetlands wherein wet-periods started

in mid or late winter, such as wetland 3, 5, 6, 7 and 8 (Figure 2.7), start date was also

influenced by winter precipitation. Notably, even though wet-periods usually started

in autumn, which means that only part of autumn precipitation (before the start

date) could have affected the variation in start date, autumn still had the strongest

influence in most wetlands (Figure 2.9b). Wetland 9 was an exception in the sense

that the previous summer had the strongest influence in this case, as wet-periods

usually started right at the beginning of autumn (Figure 2.7). Relative dominance

of autumn precipitation with respect to the previous summer can be explained by

first conceptualizing start date as a function of initial GWT (iGWT) at the be-

ginning of each hydrologic year (or the end of the previous summer), and the GWT

increasing rate (rGWT) from the beginning of autumn to the start date (Figure 2.5).

Next, influence of iGWT and rGWT on variations in start date was evaluated. For

this, standard deviation of start date was calculated by: (1) assuming that iGWT

for each year was identical and equal to the long term average iGWT, while rGWT
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varied across different years; (2) assuming rGWT for each year was identical but

iGWT varied across different years. Average standard deviation of start date for the

two cases were 83 days and 28 days respectively. Larger standard deviation in the

first case i.e., with constant iGWT and variable rGWT, indicates that rGWT played

a bigger role in influencing start date. A smaller contribution of iGWT, which is

directly correlated with summer Ppt (correlation coefficient, r = 0.79), was a result

of groundwater relaxation in summer which led to a diminished variance in GWT

in late summer. Since rGWT had a much stronger influence on start date, and as

rGWT was largely determined by autumn Ppt (r = 0.74), autumn was identified as

the most dominant season.

Following a similar line of inquiry, relative roles of seasonal PET were evaluated.

Although both autumn and the previous summer PET were expected to affect start

date, only autumn was detected to have a significant influence (Figure 2.9c, d). This

is because rGWT, which is the primary control on start date, is affected by autumn

PET. The influence of summer PET was relatively small because: (1) its impact

on rGWT was negligible; and (2) the correlation between actual ET and PET in

summer was smaller (r = 0.61) than that between ET and PET in autumn (r =

0.82).

Identifying seasons that control wet durations

In regard to the seasonal influence of precipitation on wet duration, autumn pre-

cipitation was the most dominant. Notably, precipitation in the previous summer,

winter and autumn also had moderate influence on variations in wet duration (Fig-

ure 2.10a). Since wet-periods generally spanned from autumn to spring (Figure 2.7),

precipitation in the previous summer and autumn affected wet duration via the start

date while precipitation in winter and spring affected wet duration via the end date.

For start date, as discussed in Section 3.3.1, precipitation in autumn contributed
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Figure 2.9: Relative seasonal influence on the interannual variations of start date
by (a) Ppt and (c) PET, for the ten wetlands. Individual seasonal contribution for
each wetland by (b) Ppt and (d) PET is presented in the colored table. Darker blue
cells indicate larger contributions and vice-versa. Smaller contributions in gray in
(b) and (d) indicate noisy anti-correlations of respective seasons on the dependent
variables, and have been left out for calculating the average contributions in (a) and
(c).

more than precipitation in the previous summer. For the end date, in wetlands with

long average wet durations (155 to 270 days), such as wetland 1, 2, 4, 6 and 10 (Fig-

ure 2.7), precipitation in spring contributed more than that in winter (Figure 2.10b).

In these wetlands, the GWT was generally near the ground surface during winter.

Precipitation during winter promoted discharge from wetland into the river, which

prevented the GWT from rising as much as it would happen when the GWT was

deep to begin with (Figure S1). Therefore, wet duration was less sensitive to winter
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precipitation for these wetlands. In contrast, GWT variation in spring, which was

much larger (-0.43m) than in winter (+0.13m), was influenced by the spring precipi-

tation amount. As a result, spring precipitation exerted relatively larger influence on

the end date and hence the wet duration. However for wetland 9, which also showed

long wet durations (Figure 2.7), wet duration variations were not captured well using

seasonal meteorological variables due to the strong event-scale effects. Hence a clear

seasonal influence of Ppt was not detected for this wetland. For wetlands 3, 5, 7,

and 8, wherein average of wet duration was short (ă 130 days) (Figure 2.7), winter

precipitation contributed more than spring precipitation (Figure 2.10b). In these

wetlands, due to the late start of wet-periods, the net vertical recharge and lateral

incoming fluxes were not large enough to saturate the wetland. As a result, the

winter precipitation affected the GWT change more effectively; that is, precipitation

before the peak date influenced the maximum GWT and that after the peak date

influenced the decreasing rate. Since wet-periods in these wetlands generally ended

in early to mid spring, the impacts of spring precipitation was muted. To sum up,

wet duration was mostly controlled by precipitation in autumn via the start date,

and precipitation in winter or spring (depending on the length of wet duration) via

the end date.

PET in autumn, winter and spring influenced wet duration more uniformly (Fig-

ure 2.10c, d). Given that the previous summer PET contributed little to start date

(as discussed in Section 3.3.1), its influence on wet duration was also muted. Win-

ter and spring PET affected wet duration via the end date. Larger PET in winter

led to smaller maximum GWT and faster GWT recession, thus shortening the wet

duration. The spring PET also contributed to wet duration via the rate of GWT

recession. As start date showed a larger variation range than end date (Figure 2.7),

and as autumn was the only dominant season for start date, autumn PET had a

slightly larger contribution than winter and spring.
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Figure 2.10: Relative seasonal influence on the interannual variations of wet dura-
tion by (a) Ppt and (c) PET, for the ten wetlands. Individual seasonal contribution
for each wetland by (b) Ppt and (d) PET is presented in the colored table. Darker
blue cells indicate larger contributions and vice-versa. Smaller contributions in gray
in (b) and (d) indicate noisy anti-correlations of respective seasons on the dependent
variables, and have been left out for calculating the average contributions in (a) and
(c).

2.3.4 Predicting wet-period characteristics

The Bayesian estimator was able to predict start date with errors smaller than two

weeks, three weeks, and one month at confidence levels of 32.8%, 73.1% and 95.1%

respectively (Figure 2.11). Corresponding errors for wet duration were predicted at

confidence levels of 14.3%, 58.4% and 93.6% respectively. Even though the Bayesian

estimator was trained using the GWT and meteorological conditions of only 16 years,
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Figure 2.11: Cumulative density functions (CDF) of the prediction error (ERR =
|ŷPpt&PET ´ y|) for start date and wet duration using Bayesian and OLS regression
methods.

both start date and wet duration could be predicted with errors smaller than 1 month

at a 90% confidence level. Lower prediction errors are expected for longer available

time series. Considering that start date and wet duration varied by several months or

even seasons among different years, these results indicate that the Bayesian estimator

can serve as an effective tool for predicting start dates and wet durations. Notably,

start date and wet duration can be estimated with even higher R2 using the OLS

method, as its goal is to minimize the squared error. For example, R2 for OLS

regression of start date and wet duration is 0.699 and 0.759 respectively, which is

slightly higher than that of 0.671 and 0.752 obtained using the Bayesian estimator

respectively (Table ??, column (9)). However, the Bayesian estimator is preferable

for the purpose of prediction, as it is able to predict with much less error than the

OLS estimator (Figure 2.11). For example, at a 90% confidence level, the OLS

estimator predicted start date with an error up to 67-days, while the corresponding

error based on the Bayesian estimator was less than 28-days.
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2.4 Conclusions

This study evaluated interannual variations in wet-period characteristics of ten in-

land forested wetlands in a southeastern US watershed, and quantified the extent

to which these variations can be explained based on annual or seasonal meteorologi-

cal conditions, specifically precipitation and potential evapotranspiration. The main

conclusions and limitations of this study, and its implications for future research are

as follows:

(1) Start date and duration of wet-periods in the forested wetlands of the south-

eastern US exhibit significant interannual variations. Among the ten studied wet-

lands, the start date could be as early as September or as late as March, and the

wet duration could vary by more than 6 months. As multiple ecological functions

of wetlands such as greenhouse gas emissions (Moore and Knowles, 1989; Moore

and Dalva, 1993; MacDonald et al., 1998; Strack et al., 2004; Jungkunst and Fiedler,

2007; Turetsky et al., 2008) and nitrogen cycling (Hefting et al., 2004), are influenced

by wet-periods (see Section 1 for literature review), it is expected that the ecolog-

ical functions of wetlands may also vary significantly through the years. Notably,

although wet-periods strongly influence wetland functions, more accurate estimation

of interannual variations in the ecological functions should account for the influ-

ence of other physical controls such as wetland ecology and substrate characteristics

(Ramirez et al., 2015).

(2) The annual meteorological conditions could only capture 19.3% and 47.8% of

the variations in start date and wet duration respectively, indicating that a longer

or shorter wet-period in a year can not be explained simply based on if the year

is wet or dry. Limited ability of annual variables to explain interannual variations

in wet-period characteristics can be attributed to non-uniform influence of seasonal

meteorological conditions on wet-period variations. In the studied wetlands, meteo-
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rological conditions in autumn were identified to be the most dominant in influencing

wet-period variations. This is expected to be true for other forested wetlands in the

southeastern US, as hydro-climatology in the region is characterized by autumn and

winter that act as recharge periods (Anderson and Emanuel, 2008). The relative

dominance of autumn indicates that between two years with identical annual pre-

cipitation, the one with a wetter autumn is more likely to experience an earlier start

date and longer duration of wet-period, potentially causing larger methane emis-

sions and denitrification rates. The results also indicate that for future predictions

of wet-period characteristics and associated ecological functions, robust projections

of meteorological conditions at least in the dominant seasons are paramount.

(3) 60% to 90% of the variations in wet-period characteristics could be captured

by the Bayesian regression using seasonal Ppt and PET as independent variables. As

the two meteorological variables are readily available within the continental US, the

methods presented in this paper can easily be used for other inland wetlands. The

efficacy of the framework for inland forested wetlands suggest that the method can

be used for wetlands wherein temporal GWT dynamics are primarily driven by Ppt

and PET in the regional watershed. However, the framework may not be as accurate

for wetlands where isolated precipitation events could raise the GWT above the wet-

period threshold (see details Section 3.3.1). These wetlands are generally expected to

have GWT height near the wet-period threshold. The applicability of this framework

is also likely to be limited for wetlands where GWT dynamics may be affected by

tidal fluxes (e.g. coastal wetlands) or irrigation (e.g. agricultural wetlands). Future

work should include testing the robustness and applicability of the framework in

diverse climatic and hydrogeological settings.

(4) Estimation accuracy of wet-periods was higher when in addition to the four

seasons within a hydrologic year, meteorological conditions in an antecedent season

were also considered. However, an additional antecedent season made negligible
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improvement to the estimation accuracy. This highlights that inherent hydrologic

memory of the wetlands should be appropriately accounted for while estimating

and predicting interannual wet-period variations. Although hydrologic memory of

groundwater systems may vary with climatological forcings and watershed properties

(Nippgen et al., 2016), the Bayesian framework presented here is flexible enough to

incorporate varied lengths of hydrologic memory, which can be identified using the

method discussed in section 2.3.3.

(5) In the studied wetlands, errors for predicting start date and wet duration

were less than 1 month at a 90% confidence level, indicating that the Bayesian re-

gression and variable selection framework provides an effective approach to predict

interannual wet-period variations. By pairing it with short term observation exper-

iments, the presented framework could potentially be applied to evaluate long term

variations in wetland ecological functions. For example, the framework may be first

used to predict wet-period variations using Ppt and PET projections from climate

models. Concurrently, a quantitative relation between wet-period and ecological

functions, such as methane emissions, may be established via short term observation

experiments (e.g. Nykänen et al. (1998) and Altor and Mitsch (2006)). The derived

relation can then be used with the predicted wet-periods to evaluate the impacts of

climate change on methane emissions from wetlands. However, as the relation be-

tween GWT and ecological functions are often site specific and may vary a lot among

wetlands (Walter and Heimann, 2000; Turner et al., 2016), it is important to first

verify the applicability of GWT vs. ecological function relation at a site before the

framework is applied for future predictions. In order to use the results for decision

making, appropriate uncertainty characterization should also be performed.

(6) In this study, wet-periods were defined based on a GWT threshold of -0.3 m.

However, depending on the ecological function of interest and the vegetation, sub-

strate, and meteorological properties, the critical GWT threshold in some wetlands
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may differ from -0.3 m. For example, methane emission rates from a Ohio riparian

wetland (Altor and Mitsch, 2006) and a Michigan peatland (Shannon and White,

1994) were observed to be much higher when GWT was higher than -0.2 and -0.15

m, respectively. It is suggested that appropriate thresholds should be chosen based

on the site-specific relation between GWT and the ecological function of interest.

Notably, the Bayesian framework used in this study is flexible enough to incorporate

different thresholds.

(7) While the presented Bayesian framework should ideally be trained using long

term observed groundwater data, in the absence of observed data, a physically-

based model may be used to generate long term groundwater time series in wetlands.

However, accuracy of the Bayesian approach in this case is bound to be dependent

on the model’s ability to simulate GWT in wetlands. In this study, even though the

PIHM results were extensively validated against multiple observations, uncertainty

in the simulated wet-period characteristics can not be overlooked. Further confidence

in the modeled results and the analyses could be established by validating against

additional observations.

In spite of the aforementioned limitations, the study highlights an undeniable

influence of seasonality and hydrologic memory on wet-period variations of inland

forested wetlands. The presented framework provides a simple, yet effective, ap-

proach for estimating and predicting wet-period variations in inland wetlands. The

approach can also be used to estimate variations in associated ecological functions

in wetlands.
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3

Effects of long-term climate trends on forest
mortality risk

3.1 Introduction

Forest mortality can lead to irreversible change in vegetation cover, thereby affect-

ing many processes pertinent to water, carbon, and nutrient budgets (Allen et al.,

2010). Multiple studies (Allen et al., 2015; Breshears et al., 2005; Adams et al.,

2009; Williams et al., 2013; McDowell et al., 2015; Anderegg et al., 2013b, 2012,

2013a; Parolari et al., 2014) have noted close association between forest mortality

and water and heat stress, owing to shifting precipitation patterns and rising air

temperature. However, the influence of concurrent changes in specific humidity and

CO2 concentration, which affect plant response to stress by altering stomatal ki-

netics (Katul et al., 2009a), have not received similar attention. Although elevated

CO2 concentration is expected to promote future forest productivity (Schimel et al.,

2015), the extent to which it affects forest mortality in the context of water and

heat stress remains a subject of inquiry. Short-term records (Breshears et al., 2005;

Adams et al., 2009) and long-term manipulative field studies in forests such as the
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Free Air CO2 Enrichment experiments (Norby and Zak, 2011; Ainsworth and Long,

2005; Ellsworth et al., 2004) have tried to fill the knowledge gap, however they do not

cover the entire manifold of projected climate conditions. The goals of this study are

to evaluate the individual and combined influence of projected changes in precipita-

tion, temperature, specific humidity and CO2 concentration on forest mortality risk;

and investigate whether the response of mortality risk differs among plant functional

types (PFTs).

Tree mortality may occur through several mechanisms including hydraulic failure,

carbon starvation, phloem transport limitation, and biotic attack (McDowell et al.,

2008, 2011). Hydraulic failure is characterized as the malfunction of xylem water

transport associated with cavitation, which is induced by low xylem water potential

under limited soil water availability. Carbon starvation occurs when carbohydrate

supply and storage cannot meet demand (McDowell et al., 2011), which could result

from low photosynthesis due to stomatal closure in response to low plant water poten-

tial and high atmospheric vapor pressure deficit (VPD). Reduced photosynthesis and

plant water potential also pose limitations for phloem to maintain turgor pressure

and may further impair phloem transport (Sala et al., 2010). Intense and prolonged

stresses could weaken the defenses of forests to biotic attack (Williams et al., 2013)

and may alter plant adaptation, seed production, and germination (Allen et al.,

2015). Despite these mechanisms being far from thoroughly understood (McDowell

et al., 2011; Sala et al., 2010), they primarily result from low plant water potential

and restricted photosynthesis.

3.2 Methods

3.2.1 Quantification of mortality risk

To quantify the risk of mortality induced by low plant water potential, previous

studies (Choat et al., 2012; Delzon and Cochard, 2014) used the safety margin, i.e.,
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Figure 3.1: Distribution of plant functional type (PFT) and locations of the thir-
teen investigated biomes. Biomes are the areas within the selected rectangular re-
gions that are covered by a given PFT. PFTs shown in the map include evergreen
broadleaf forest (EBF), deciduous broadleaf forest (DBF), evergreen needleleaf forest
(ENF) and deciduous needleleaf forest (DNF).

the difference between the minimum observed xylem water potential and the xylem

water potential at 50% loss of conductivity (ψ50). Plants with narrower or more neg-

ative safety margins are considered to be more susceptible to hydraulic failure. The

safety margin provides a static assessment of plant susceptibility to hydraulic failure,

though its representativeness may be undermined by limited field observations. It

has also been suggested that instead of the minimum water potential plants reach,

the duration plants operate under high percentage loss of conductivity could more

likely distinguish mortality (McDowell et al., 2013; Sperry and Love, 2015). Here,

a duration-based hydraulic failure risk (HFR) is introduced, which quantifies the

fraction of days when the daily minimum xylem water potential (ψx,min) falls below

ψ50. Because stomatal closure restricts photosynthesis (McDowell et al., 2015, 2011;

Poyatos et al., 2013), a stomatal closure risk (SCR) can also be formulated as the

fraction of days on which stomata are completely closed (Appendix B, Section 1).

The aggregated mortality risk is then defined as the fraction of days with occurrence
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of either hydraulic failure or stomatal closure, two physiological states contributing

to dieback and eventual mortality. Alternative quantification of risk that account for

stress duration and severity are also considered to test the robustness of the analysis

here (Appendix B, Section 5). This quantification of modeled risk evaluated using

the model described below is shown to capture the temporal variation of observed

mortality in response to climate stressors at four sites, (Appendix B, Section 3).

3.2.2 SPAC model

The mortality risk is evaluated using a soil-plant-atmosphere continuum (SPAC)

model, which computes hourly dynamics of xylem water potential and stomatal con-

ductance. The model consists of three process components: a soil water balance, a

plant water transport that is based on cohesion-tension theory and associated hy-

draulic properties, and an atmospheric boundary layer (ABL) development model

that permits evapotranspiration to alter the height, temperature and specific humid-

ity of the boundary layer (Appendix B, Section 1).

Soil water balance. Soil is characterized as a two-layer bucket. Assuming negli-

gible lateral flux due to the effects of topography and contribution from groundwater,

the vertically averaged relative soil moisture in the first layer (s1) is recharged by

throughfall (PT “ P ´ I), and depleted by leakage (L1) to the second layer, surface

runoff (Q), soil evaporation (V ) and plant root extraction (E1). The second layer

soil moisture (s2) is recharged by L1 and depleted through leakage to deeper soil (L2)

and root extraction (E2). Here P is precipitation and I is interception loss. The soil

water balance at an hourly scale for the two layers is expressed as

n1Zr1
ds1

dt
“ PT ´ L1 ´Q´ V ´ E1 (3.1)

n2Zr2
ds2

dt
“ L1 ´ L2 ´ E2 (3.2)
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where nj and Zrj (j “ 1, 2) denote soil porosity and root zone depth of the two layers,

respectively. Daily precipitation is modeled as a marked Poisson process (Rodŕıguez-

Iturbe and Porporato, 2007), with a frequency parameter of λP and rainfall depth

drawn from an exponential distribution with a mean of αP . Daily precipitation is

randomly assigned within an hour. Interception is quantified as I “ maxpP ´ Is, 0q,

where Is “ 10´4LAI (m) (Wigmosta et al., 1994) is the interception storage and LAI

is leaf area index. According to Darcy’s law for unsaturated flow, the water flux

between the two soil layers is

L1 “ K
ψs,1 ´ ψs,2
ρwg∆l

(3.3)

where ρw is water density; g is gravitational acceleration; the soil vertical unsaturated

hydraulic conductivity (K) and flow path (∆l) are taken as the harmonic mean of

the two layers, i.e., K “ pZr1 ` Zr2q { pZr1{K1 ` Zr2{K2q, ∆l “ pZr1 ` Zr2q {2, where

K1 and K2 are the unsaturated hydraulic conductivities of the two layers.

Leakage from the second layer occurs only when s2 ą ssfc,2 with a rate of K2

(Rodŕıguez-Iturbe and Porporato, 2007), where sfc,2 is the field capacity of the second

layer corresponding to ψs,2 “ ´0.03 MPa (Dingman, 2002). Q is generated when

the first layer is fully saturated. Soil evaporation is controlled by the potential

evaporation rate (Vp) and the limitation induced by top soil moisture (s1). Vp is

calculated using the adapted Penman-Monteith equation (Penman, 1948; Monteith,

1964), i.e.,

Vp “
∆Rb

n ` ρacppes ´ eaq{ra
ρwλw r∆` γp1` rs{raqs

(3.4)

where ∆ is the saturation vapor pressure function with respect to air temperature at

2 m height T (˝C); Rb
n is the below-canopy shortwave net radiation, which depends

on shortwave net radiation (Rn) and an exponential decay function given by Rb
n “

Rn expp´b0LAIq (Martens et al., 2000); ρa is air density; cp is the constant-pressure

45



specific heat capacity of air; es and ea are saturated and actual vapor pressure; λw is

the latent heat of vaporization; γ is the psychrometric constant; ra “ 50 s m´1 and

rs “ expp8.206´4.255sfc,1q s m´1 (Oleson et al., 2008) are the aerodynamic and soil

resistance to water vapor transport, respectively. The actual soil evaporation V is

calculated using the following piecewise linear function:

V “

$

’

&

’

%

Vp if 1 ě s1 ą sfc,1

ps1 ´ sh,1q{psfc,1 ´ sh,1q ˆ Vp if sfc,1 ě s1 ą sh,1

0 if sh,1 ě s1 ą 0

(3.5)

where sh,1 is the hygroscopic point of the top layer soil, i.e., the soil moisture corre-

sponding to ψs of ´3 MPa (Dingman, 2002).

Plant water transport. Water transport from soil to plant and within plant is

modeled as a resistance system with no capacitance. Soil water is extracted by roots

in both layers, i.e.,

Ej “ gsr,jpψs,j ´ ψrq (3.6)

where ψr is the root water potential; the soil-root conductance (gsr) is computed

using a cylindrical root model (Katul et al., 2003):

gsr,j “
Kj

a

RAIj

Zrjπρwg
(3.7)

in which RAIj is root area index in each layer. Assuming negligible plant water

storage, according to continuity, the total transpiration (E) is

E “ E1 ` E2 (3.8)

E “ 2gp

„

ψr ´ pψx `
1

2
ρwgHcq



“ gp rψx ´ pψl ` ρwgHcqs (3.9)

where ψx and ψl are xylem (located at half the canopy height (Hc)) and leaf water

potential respectively; the plant conductance gp depends on the most negative water
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potential in plant, i.e., ψl (Manzoni et al., 2013),

gp “ gp,max r1` pψl{ψ50q
a
s
´1 (3.10)

where gp,max is the maximum plant conductance; ψ50 is the xylem pressure at 50%

loss of conductivity; a is the shape parameter of plant vulnerability curve.

CO2 and water vapor transfer between leaves and atmosphere can be described

by Fickian diffusion through the stomata:

fc “ gspci ´ caq (3.11)

fe “ a0gspei ´ eaq{P0 « agsD (3.12)

where fc and fe are CO2 and water vapor flux; gs is the stomatal conductance to

CO2; a0 “ 1.6 is the relative diffusivity of water vapor with respect to CO2; ci and

ca are intercellular and ambient CO2 concentration; ei is intercellular water vapor

pressure; D is the vapor pressure deficit normalized by atmospheric pressure P0, i.e.

D “ pes´ eaq{P0. Here, for the sake of simplicity, saturated water vapor pressure at

the leaf surface is approximated as es, without considering the influence of leaf size

and wind speed on leaf temperature.

According to the Farquhar photosynthesis model (Farquhar et al., 1980), the

assimilation rate of CO2 is described as a function of ci (when ignoring the mesophyll

conductance), Rn and T . Accounting for the limitation by RuBP (JE), Rubisco (JC)

and sucrose synthesis (JS), the carbon assimilation rate is computed as

fc “ Apci, Rn, T q “ φpJE, JC , JSq ´Rd (3.13)

Representations of gross assimilation φpJE, JC , JSq and the respiration from the leaf

(Rd) come from the model by (Collatz et al., 1991). Based on the stomatal opti-

mization theory (Katul et al., 2009a), the net carbon gain for the leaf is defined as

fpgsq “ fc ´ λfe (3.14)
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The stomata is assumed to operate under a trade-off between maximizing fc and

minimizing fe in order to achieve the maximum net carbon gain with the optimal

gs subject to dfpgsq{dpgsq “ 0, fpgsq ě 0. λ is the marginal water use efficiency

(mWUE), i.e., λ “ dfc{dfe. To account for the responses of stomata to water stress,

λ is quantified as (Manzoni et al., 2011)

λ “ λ˚WW

ca
c˚a

exppβ0ψ̄lq (3.15)

where λ˚WW is the mWUE under well-watered condition at ca “ c˚a; c
˚
a “ 400 ppm

is the reference ambient CO2 concentration; β0 is the slope parameter; ψ̄l is the

average leaf water potential in the previous day. Increase of λ with ca was validated

in previous studies (Manzoni et al., 2011; Katul et al., 2009b).

The stomatal conductance (gs) can be solved by combining Equations (3.11) –

(3.15). The water flux at a leaf scale (fe) can then be obtained based on Equation

(3.12). By upscaling the water flux to a canopy scale based on continuity, i.e.,

E “ feLAI, and combining with Equations (3.6), (3.8), (3.9), the plant hydraulic

system is closed.

ABL development. The energy and mass components in ABL development are

affected by feedback of total water flux from the ground surface (de Arellano et al.,

2012), including interception, soil evaporation and plant transpiration. The cou-

pled SPAC model simulates ecohydrologic states at an hourly interval. The hourly

dynamics of the soil-plant system above is coupled with the development of the

ABL to obtain diurnal mean air temperature and humidity that are consistent with

land-atmosphere heat and mass exchange (de Arellano et al., 2012). The ABL is

represented as a well-mixed slab of air with a height h and constant potential tem-

perature θ and specific humidity q. At the ground surface, neglecting the ground

heat flux, available solar energy is partitioned into latent heat and sensible heat (H),
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Rn “ λwρwET `H (3.16)

where ET “ E ` V ` I is the total water flux from the soil-plant system. Within

ABL, temperature and humidity are governed by energy and water balance (Mc-

Naughton and Spriggs, 1986). According to the first law of thermodynamics and

mass conservation, the energy and water balance are

ρacph
dθ

dt
“ H ` ρacppθf ´ θq

dh

dt
(3.17)

ρah
dq

dt
“ ρwET ` ρapqf ´ qq

dh

dt
(3.18)

where θf and qf are the potential temperature and specific humidity of the free

atmosphere at height h respectively. In the free atmosphere, potential temperature

and specific humidity are assumed to vary linearly with height (Porporato, 2009),

θf “ θf0 ` γθh

qf “ qf0 ` γqh

where γθ and γq are the lapse rate of potential temperature and specific humidity in

the free atmosphere, respectively.

θf0 and qf0 are the intercepts of the assumed linear profiles, which can be obtained

by inserting the initial conditions. Following (McNaughton and Spriggs, 1986), the

simplified ABL growth rate is expressed as

dh

dt
“

H

ρacphγθ
(3.19)

The dynamics of θ, q and h are solved by Equations (3.17) – (3.19). At the be-

ginning of each day and during precipitation events, ABL is reset to the daily

initial conditions based on daily climate data (see Appendix B Section 2 for de-

tails). The diurnal development of ABL, in response to the feedback of heat and
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water vapor flux from the soil-plant system, provides dynamic forcing of tempera-

ture and humidity to the soil-plant system. Code for the SPAC model is available at

https://github.com/YanlanLiu/SPACModel_2017.

Stomata optimization

Soil 
water 
balance

Plant water transport

Atmospheric boundary layer

Figure 3.2: Processes and states in the SPAC model. See the text for notations.

Soil and vegetation properties

Based on the global land cover type from MODIS (MCD12C1) (NASA LP DACC,

2013), thirteen forest biomes were selected across the globe. The biomes cover three

PFTs and a variety of climate types (Figure 3.1, Table B.11) with mean annual pre-

cipitation ranging from 500 to 3000 mm. Regions with shallow-groundwater (Fan

et al., 2013) and snow-dominated climate (Kottek et al., 2006) were avoided as the

influence of groundwater and snow is not considered in the model. The SPAC model

in each biome was parameterized with local soil and representative plant properties.

Soil texture compositions were obtained from the Harmonized World Soils Database

(FAO, 2009). Soil hydraulic properties were calculated based on the generalized
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statistical relations (Saxton et al., 1986). Annual cycle of LAI was extracted from

the level-4 MODIS global Leaf Area Index (LAI) and Fraction of Photosynthetically

Active Radiation (FPAR) product (MCD15A2) (NASA LP DACC, 2016). Plant

hydraulic traits were obtained from a global database containing hydraulic traits of

866 species (Kattge et al., 2011). Photosynthetic parameters were derived from a

cross-species study (Medlyn et al., 2002). Stomatal optimization parameters were ob-

tained based on a meta-analysis study across PFTs and climates reported in previous

study (Manzoni et al., 2011). These plant properties were obtained at a biome-level

by averaging the properties of trees belonging to the same PFT and climate type

(Kattge et al., 2011) as found in the given biome.

Historical and projected climates

The SPAC model in each biome is forced by local daily climate, including stochas-

tic precipitation, net shortwave radiation, and initial and boundary conditions of

potential temperature and specific humidity of ABL. At the beginning of each day,

the ABL was reset with the corresponding initial and boundary conditions. The

stochastic precipitation is represented as a marked Poisson process characterized by

frequency and mean rainfall depth statistics (Rodŕıguez-Iturbe and Porporato, 2007).

Daily historical climates were calculated based on the NCEP/NCAR reanalysis data

(Kalnay et al., 1996) from 1986 to 2005. Projected climate changes were obtained

from multi-model outputs of CMIP5 experiments under four RCP scenarios (Table

B.12). For each model under each RCP scenario, changes in climate variables were

quantified as the difference between the averages for 1986 – 2005 and 2050 – 2069.

Future precipitation statistics and other climate forcings for the model were gener-

ated by incorporating these changes into the historical climates from NCEP/NCAR

(Appendix B, Section 2) to eliminate the influence of biases in climate model outputs

(Knutti et al., 2010). Historical and future atmospheric CO2 concentrations under
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the four RCP scenarios were provided in (Meinshausen et al., 2011). The response of

mortality risk to changes in the following climate characteristics is analyzed: mean

annual precipitation (MAP), precipitation seasonality (PS), mean annual air temper-

ature (T), mean annual atmospheric specific humidity (SH), and atmospheric CO2

concentration. PS is quantified as the fraction of MAP that falls within the growing

season.

3.2.3 Experimental design and statistics

The mortality risk under a given climate was quantified based on plant dynamics by

running the SPAC model at hourly resolution for 30 annual ensembles after a 5-year

warm-up period. Influence of changes in each individual climate variable was ana-

lyzed by keeping the others the same while only changing the target climate variable.

Influence of combined changes in climate variables as projected by multi-models were

grouped together to evaluate the overall response of mortality risk under each RCP

scenario. Each reported change in risk is the average of changes of all the biomes, un-

less stated otherwise. Change in each biome was calculated as the difference between

the historical risk and the future risk, i.e., the average risk based on multi-model pro-

jections, in proportion to the historical risk. Biomes with historical risks lower than

0.01% were excluded from the statistics.

3.3 Results

3.3.1 Influence of individual changes in climate variables

Mortality risk is found to increase with reduced annual precipitation and a lower frac-

tion of precipitation in the growing season. Reduced precipitation decreases plant

water potential via low soil moisture, hence increasing HFR (Figure 3.3d, horizon-

tal axis). Meanwhile, low plant water potential also restricts stomatal conductance,

hence increasing SCR (Figure 3.3a, horizontal axis). Plants experience higher risk in
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Figure 3.3: Responses of mortality risk to individual changes in mean annual
precipitation amount (MAP), precipitation seasonality (PS), mean annual air tem-
perature (T), specific humidity (SH) and CO2 concentration for ENF in the western
US (a, b and c) and DBF in the southeastern US (d, e and f). PS is quantified as the
fraction of MAP that falls within the growing season. Changes in MAP and PS are
incorporated in daily precipitation time series through their impact on the statistical
distribution of stochastic precipitation; changes in T, SH and CO2 are incorporated
uniformly throughout the year, keeping the intra-annual patterns unchanged. Num-
bers on the contours denote risk magnitude (%). Predicted ranges by multi-models
under the four RCP scenarios are illustrated by rectangles. Blue and green contours
represent risks due to hydraulic failure and stomatal closure, respectively.

the growing season than in the non-growing season, due to low plant water potential

and atmospheric aridity imposed by a high VPD. Given the same annual precipi-

tation, more growing season precipitation (higher PS) generally decreases the risk

(Figure 3.3a, d, vertical axis). Reduced precipitation during the non-growing season

typically does not increase the risk, as the stressed conditions mostly occur in the

growing season.

Sensitivity of mortality risk to precipitation amount and seasonality varies across

soil, plant, and climate conditions as expected. For ENF in the western US (Figure

3.3a, biome 1 in Figure 3.1), the risk is primarily controlled by annual precipitation

amount when less than 400 mm. For wetter climates (MAP ą 800 mm) with low
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growing season precipitation (PS ă 0.2), seasonality becomes the dominant factor.

Under the historical climate in this region, both precipitation amount and seasonality

play significant roles in mortality risk. Although large uncertainties exist in the

projected annual precipitation, CMIP5 models mostly predict lower PS in this region,

which is likely to increase mortality risk. For DBF in the southeastern US (Figure

3.3d, biome 3 in Figure 3.1), both precipitation amount and seasonality affect the risk

over a wide range of climatic conditions. Although the risk generally decreases with

higher PS when PS ă 0.7, the trend reverses for PS ą 0.8. As CMIP5 projections

point to increase in precipitation with little change in seasonality, mortality risk of

this biome is expected to decrease under future precipitation patterns.

Modeled mortality risk increases with warming air temperature but decreases

with rising specific humidity (Figure 3.3b, e) and CO2 concentration (Figure 3.3c,

f). Elevated temperature promotes water loss through higher VPD. Although stom-

ata close in response to high VPD to prevent excessive water loss, the same action

increases the risk of full stomatal closure. Increasing specific humidity, on the other

hand, offsets the increase of VPD by air temperature, hence attenuating intensi-

fied risks caused by warming. Under higher atmospheric CO2 concentration, plants

can operate at lower stomatal conductance to meet their biochemical demand for

CO2. This so-called “carbon fertilization effect” allows plants to enhance water-use

efficiency, hence reducing the risks of both hydraulic failure and stomatal closure

simultaneously. All three climate variables exhibit significant influence on mortality

risk of ENF in the western US and DBF in the southeastern US. For the projected

changes in temperature and specific humidity (Figure 3.3b, e), the intensifying influ-

ence of rising air temperature overwhelms the opposing influence of rising specific

humidity, leading to higher VPD and thus higher risk. Remarkably, elevated CO2

concentrations offset the intensified risk imposed by elevated temperature (Figure

3.3c, f).
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Despite the similar patterns of response to climate change, sources of risk in the

two biomes (Figure 3.3) are markedly different. Under both historical and projected

climates, the risk for the ENF in the western US mostly originates from stomatal clo-

sure. The risk for the DBF in the southeastern US mostly originates from hydraulic

failure. However, under extremely high air temperature (annual mean ą 23˝C) in

the DBF, high VPD induces full stomatal closure, resulting in a switch from HFR

to SCR (Figure 3.3e, f). The different sources of risk for these two biomes can be

attributed to their response strategies under stress, which are controlled by their

hydraulic traits. ENF consists of conifers, which mostly operate with a wide safety

margin (ψx,min ´ ψ50) (Choat et al., 2012) and exhibit an isohydric strategy under

stress (McDowell et al., 2008), i.e., restricting transpiration by reducing stomatal

conductance while maintaining high water potential to prevent run-away cavitation

(Figure B.12). Owing to this conservative water use strategy and the wide safety

margin, isohydric conifers are more susceptible to SCR than HFR. In contrast, DBF

consists of angiosperms, which operate with a narrower safety margin (Choat et al.,

2012) and largely use an anisohydric strategy under stress McDowell et al. (2008),

i.e., stomata remain open to sustain photosynthesis at the expense of decreased water

potential (Figure B.12). With this less conservative water use strategy and a narrow

safety margin, anisohydric DBFs are more susceptible to HFR than SCR. These con-

trasting stress responses have been widely reported (McDowell et al., 2008; Choat

et al., 2012; McDowell, 2011). Previous studies also suggested hydraulic failure as

the major mechanism in an aspen (angiosperm) mortality event (Anderegg et al.,

2012) and near-zero stomatal conductance as the main contributor to conifer mor-

tality events (McDowell et al., 2008; Poyatos et al., 2013). It is to be noted that

large variations in hydraulic traits exist within each PFT, and the results presented

here are based on the average traits of species falling within a PFT and climate type

in a given biome.
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3.3.2 Influence of combined changes in climate variables

Figure 3.4: Response of mortality risk to combined changes in climate vari-
ables. P+T includes changes in mean annual precipitation, precipitation season-
ality and air temperature; P+T+SH includes additional changes in specific humid-
ity; P+T+SH+CO2 includes additional changes in atmospheric CO2 concentration.
Gray dashed lines in the subplots show the risks under historical climates. Upper and
lower boundaries of the boxes correspond to the 25th and 75th quantiles of the risk
based on multi-model projections in each RCP scenario. Numbers in the subplots
correspond to the biome locations in Figure 3.1.

Based on the CMIP5 projections of four representative concentration pathway

(RCP) scenarios in all the 13 biomes (Figure B.15), the response of mortality risk

to changes in three combinations of climate conditions are examined (Figure 3.4):

(1) P + T; (2) P + T + SH; and (3) P + T + SH + CO2. Here changes in

P include combined changes in MAP and PS. For the 13 investigated biomes, on

average, shifting precipitation patterns and rising temperature projected by RCP4.5

are found to intensify the risk by 158.8% for the period 2050 – 2069 relative to the

historical risk. This increase in risk is consistent with previous studies highlighting

the exacerbating effects of higher temperature (Allen et al., 2010; Breshears et al.,

2005; Adams et al., 2009; Williams et al., 2013; Anderegg et al., 2013b; McDowell

56



et al., 2015). However, by incorporating increases in specific humidity, the risk

decreases by 46.6%. More remarkably, the risk drops an additional 91.2% under the

added influence of elevated CO2 concentration. In aggregate, changes in all four

climate conditions increase the risk by 21.0% on average, which is much lower than

the increase of 158.8% when only the changes in precipitation and air temperature are

considered. Under high emission scenarios (RCP6.0, RCP8.5), elevated humidity and

CO2 concentration might even overwhelm the effects of higher temperature, possibly

resulting in a lower risk than the historical level (Figure 3.4). These alleviating effects

are robust across alternative risk measures (Table B.41, Figure B.42). The alleviating

effect of increasing atmospheric CO2 concentration is in line with reported decrease

in stomatal conductance and increase in water use efficiency across various climate

regions and species (Allen et al., 2015; Ainsworth and Rogers, 2007; Brodribb et al.,

2009; Lammertsma et al., 2011; Keenan et al., 2013; Drake et al., 2016).
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Figure 3.5: Average risk under historical climates (empty circles), changes in P+T
(light filled circles) and changes in P+T+SH+CO2 (dark filled circles), for each PFT
based on RCP4.5. Gray filled triangles denote the relative contribution of hydraulic
failure to the mortality risk, i.e., 1 denotes that all the risk is due to hydraulic failure
(HF) and 0 denotes all the risk is from stomatal closure.
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On average, the combined changes of P+T+SH+CO2 in RCP4.5 are found to

increase the mortality risks by 101.1%, –18.3%, and 19.6% for ENF, DBF and EBF

biomes respectively (Figure 3.5). The significantly higher increase for ENF compared

to the other two PFTs results from their distinct risk sources (Figure 3.5). SCR, the

primary risk source for ENF, shows notably higher sensitivity to air temperature rise

than HFR. Specifically, for 1 ˝C increase in air temperature from historical climates,

HFR and SCR are estimated to increase by 23.5% and 125.1%. Remarkably, the

increase in SCR is close to the previously reported 116.3% ˝C´1 increase in die-

off events of Pinus edulis (Adams et al., 2009), a conifer species likely threatened

by SCR. From a mechanistic perspective, elevated temperature increases VPD and

reduces stomatal conductance. This restricts carbon assimilation but promotes water

loss, which results in a higher probability of full stomatal closure, i.e., higher SCR.

The increase in HFR is smaller as the reduction in stomatal conductance partly

alleviates the increase in water loss due to increased VPD. Under projected changes

of precipitation and VPD in RCP4.5, HFR increases by 135.5% on average, while

SCR increases by 305.8%. When CO2 is also considered, the aggregate changes are

–8.6% and 83.7% for HFR and SCR, respectively. These findings imply a larger

increase in mortality risk of ENFs, more specifically of isohydric species, than other

PFTs under changes in the considered climate conditions.

3.4 Discussion and implications

The study evaluates how projected climate change will affect mortality risks, and how

the risks may be mediated by different PFTs across the globe. In this regard, the

study introduces a measure of mortality risk that accounts for the duration plants

operate under high percentage loss of conductivity or stomatal closure. Although

large uncertainty exists in the exact physiological mechanisms that cause mortality

(McDowell et al., 2011; Sala et al., 2010), the proposed mortality risk measure cap-
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tures two of the fundamental causes, i.e., low water potential and severely restricted

carbon assimilation, which contribute to the downstream mortality mechanisms. No-

tably, the quantification of mortality is made possible by synergistic coupling of

multiple prior sub-models connecting plant physiological status to hydrological and

meteorological conditions. This coupling allows the SPAC model to resolve hourly

dynamics of xylem water potential and stomatal conductance, the variables required

to evaluate mortality risk (Appendix B, Sections 1 and 5). For example, by account-

ing for the feedback between evapotranspiration and atmospheric boundary layer

(ABL) development, the SPAC model is able to simulate a physically-consistent

hourly dynamics of air temperature and specific humidity during droughts. Dur-

ing drought, when evapotranspiration is restricted by low soil moisture, the model

partitions larger fraction of incoming energy into sensible heat thus enhancing the

ABL and raising the temperature during daytime. This evapotranspiration-ABL

coupling allows SPAC to consider the co-occurrence of extreme drought and heat

stress, which has been pointed out as the main environmental trigger of tree mortal-

ity (Breshears et al., 2005; Adams et al., 2009; Williams et al., 2013; Anderegg et al.,

2013b). The SPAC model also uses an optimization based stomatal conductance

representation that accounts for the effect of plant hydraulic limitation (Appendix

B, Section 1). The representation is an advantage over several widely used dynamic

global vegetation models (DGVMs), where the stomatal regulation is disconnected

or empirically connected with soil water stress (McDowell et al., 2013, 2015). Many

of these semi-empirical models are derived from observations under ambient CO2

concentration, and their parameter values are subject to change in an elevated CO2

environment (Katul et al., 2009a), thus undermining their efficacy under future cli-

mate. In contrast, the optimization based stomatal regulation model used here has

been demonstrated to predict stomatal response to stress under both historical and

elevated CO2 concentration (Katul et al., 2009b).
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Although the modeled risk shows strong correspondence with observed mortality

(Appendix B, Section 3), the estimated risk should be interpreted with care. Given

the uncertainties inherent in model structure and parameters, and the complexity of

forest ecosystem, it is unrealistic to accurately assess the exact magnitude of mor-

tality risk. Large variations in plant hydraulic traits, tree height, diameter at breast

height (DBH) and stand density (Rowland et al., 2015; Bottero et al., 2017) may

impact the actual mortality risk. Sensitivity of mortality risk to aforementioned

factors and to uncertainties in model structure are examined (Appendix B, Section

4). Results indicate that despite their influence on the magnitude of mortality risk,

the alleviating effect of increasing specific humidity and CO2 concentration is still

found to be robust. Notably, actual mortality risk may also be altered by forest

fire frequency and insect outbreak, rooting profile, seed production, community level

competition, local acclimation to drought and adaption to long-term climate change

(Clark et al., 2016; Wolf et al., 2016; Wolfe et al., 2016; Jump et al., 2017), factors

whose characterization is still fraught with uncertainties (Norby et al., 2005). Their

impacts in relation to the direct influence of climate conditions discussed here de-

serve further investigation. However, independent of these indirect influence, results

reported here demonstrate a ubiquitous and robust alleviating effect of elevated at-

mospheric humidity and CO2 concentration, which is comparable in magnitude to

the intensifying effect of changes in precipitation patterns and air temperature. The

combined influence of changes in these climate variables on mortality risk is also

strongly mediated by plant hydraulic traits. These results highlight that ignoring

the influence of elevated atmospheric humidity and CO2 concentration may lead to

overestimation of future forest mortality risk.
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4

Detection of early warning signal of forest mortality

4.1 Introduction

Episodes of forest mortality have been widely observed in recent decades (Allen

et al., 2010; van Mantgem et al., 2009). Such abrupt transitions in land cover impact

local species composition and ecosystem services as well as the global carbon balance

(Allen et al., 2010; Settele et al., 2015). Predictive approaches to forest mortality are

now proliferating either through modeling of plant physiological dynamics (McDowell

et al., 2013; Parolari et al., 2014; Liu et al., 2017) or by drawing relations with

hydroclimatic stresses (Adams et al., 2009; Anderegg et al., 2013a, 2015). However,

given the complexity of mortality at the individual tree (McDowell, 2011; McDowell

et al., 2011) and ecosystem levels (Clark et al., 2016; Wolf et al., 2016), compounded

by uncertainties in model structure and parameterization, predicting mortality using

vegetation models alone remains challenging (Sala et al., 2010). Relations between

hydroclimatic stress and mortality provide another predictive approach, though its

efficacy can be undermined by acclimation of vegetation properties and community

competition. As these two approaches entail estimation of water and carbon budgets
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within the soil-plant system subject to projected climatic variability, uncertainties in

these estimations are bound to influence the accuracy and uncertainty of mortality.

Here, an alternative approach for predicting climate-induced forest mortality

through direct monitoring of vegetation dynamics is proposed. As theoretical anal-

yses and observations across a range of systems have revealed (Scheffer et al., 2009),

near the tipping point where an abrupt shift in the system state occurs, the resilience

or the recovery rate from a deviated state is generally reduced. A consequence of this

reduced recovery rate or the critical slowing down near the tipping point is high tem-

poral autocorrelation (Scheffer et al., 2009). This property was leveraged in a recent

study (Verbesselt et al., 2016) to assess spatial patterns of static forests resilience

using remotely sensed greenness, i.e, normalized difference vegetation index (NDVI).

In this context, the tipping point is in the form of forest mortality that nudges the

ecosystem to an alternate dynamical regime such as a different forest composition,

shrub land or grassy open area (Scheffer et al., 2001). The idea of static resilience

obtained for a given time period using autocorrelation can be extended to a dynamic

metric to track temporal variations in resilience. This study develops such a metric

and evaluates the potential of using reduced resilience as an early warning signal

(EWS) for impending mortality. The following specific questions are addressed: (1)

Can resilience based EWS be identified prior to observed forest mortality? (2) How

much area featured EWS, and how early does the EWS appear prior to observed

mortality? (3) Can the EWS be used to predict the extent of documented forest

mortality?

Previous studies (Scheffer et al., 2009; Dakos et al., 2008, 2015) demonstrated the

effectiveness of using an increased lag-1 temporal autocorrelation within a moving

window as a EWS to abrupt changes. However, most of these studies were based

on fully defined theoretical systems or control experiments and took advantage of

sufficiently long time series. Application of this method in a ‘real’ ecosystem setup
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is expected to be more challenging, in part due to the limited duration of the avail-

able time series, the presence of dominant seasonal frequencies in variations of both

ecosystem response and forcing signals, variations in autocorrelation of the forcing

signals, and the presence of stochastic noise. These challenges have partly con-

tributed to the scarcity of examples detecting critical slowing down in real natural

systems (Scheffer et al., 2009). For these reasons, a Bayesian dynamic linear model

(DLM) (Methods, Appendix C Section 1) is proposed.

A probability distribution of autocorrelation was obtained from DLM at each

time point during 1999–2015. Based on the estimated mean and uncertainty range

of autocorrelation at each time point, EWS was identified as the presence of the

mean autocorrelation exceeding a threshold and lasting for at least 3 months. The

threshold was computed as the long-term average of the 80th percentile of estimated

autocorrelation uncertainty range.

4.2 Methods

4.2.1 Bayesian dynamic linear model.

The Bayesian DLM detects time-varying autocorrelation in time series while ac-

counting for intrinsic stochastic noise anxd seasonality inherent in both observed

vegetation dynamics and climate forcings. It also accounts for the trend of vege-

tation and climate variability to avoid false alarms that merely arise from changes

in the trend of NDVI time series or increasingly auto-correlated climate conditions

(Appendix C Section 2). The DLM consists of an observation equation and a state

evolution equation, i.e.,

yt “ F
T
t θt ` vt (4.1)

θt “ Gθt´1 `wt (4.2)
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where yt is the observed variable (NDVI) at time t after subtracting the long-term

mean; Ft is a p-dimensional vector of known constants or regressors at time t, includ-

ing climate variables and NDVI at time t ´ 1; θt is a p-dimensional state vector at

time t, containing coefficients representing local mean, trend, seasonality, sensitivity

to climate conditions and the lag-1 autocorrelation of NDVI; vt is the observation

noise following a zero mean Gaussian distribution; G is a known p ˆ p state evo-

lution matrix considered as time-invariant; wt is the state evolution noise at time

t following a mean zero multivariate Gaussian distribution, and is independent of

νt. Non-informative priors for θ0 and noises were provided (Appendix C Section

1). At each time t, using forward filtering (27), the posterior distribution of θt was

estimated by combining the prior from the summary of history py0, y1, . . . , yt´1q and

the likelihood from current observation of yt, resulting in a time-varying posterior

distribution of θt. Of particular interest is the temporal trajectory of the entry in

θt quantifying the relation between yt and yt´1. This lag-1 autocorrelation was used

as a time-varying measure of resilience. EWS was then identified as the presence

of this autocorrelation being higher than a threshold (Figure 4.1). Theoretical de-

tails and controlled synthetic experiments demonstrating the efficacy of DLM can be

referred in Appendix C Sections 1 and 2. The source code of DLM is available at

https://github.com/YanlanLiu/early-warning-signal-DLM.

4.2.2 Vegetation and climate data.

The area of interest includes all the forested area in California (CA), USA, here-

after referred to as the study area. Mortality in the study area has been widely

observed in recent years based on the annual aerial surveys conduced by the United

States Forest Service (U.S. Forest Service, 2015a), with potential to reduce the gross

primary productivity both locally and across North America through eco-climate

teleconnections (Swann et al., 2018). The observed mortality maps from 2005 to
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2015, consisting of polygons delineating the areas with aerially observed mortality,

were re-projected and rasterized at 30 m resolution to match with remotely sensed

NDVI data. Regions with mortality intensity greater than 1 tree per acre based on

the aerial survey data were used for analysis. Landsat 7 ETM+ surface reflectance

product (U.S. Geological Survey, 2017) from 1999 June to 2015 December with a

spatial resolution of 30 m and a temporal interval of 16-day was used to compute

NDVI in the study area. Due to a large amount of the original Landsat data, NDVI

was computed and exported in tiles from Google Earth Engine. Based on the 30 m

resolution map of tree cover in 2000 (Hansen et al., 2013), all the pixels in CA with

non-zero canopy closure for vegetation taller than 5m were included in the study

area. Mortality caused by human activities, as indicated in the aerial survey maps,

were excluded from analysis. Pixels affected by fire each year were identified based

on the MODIS Active Fire product (U.S. Forest Service, 2016) and removed from

estimation and prediction analysis. Data on cloudy or snow cover days were removed

based on the “cfmask” band, and were considered as missing data in DLM (see Ap-

pendix C Section 1 for details). Climate conditions of daily precipitation, snow water

equivalent, air temperature, incident shortwave radiation and water vapor pressure

were obtained from Daymet V3 (Thornton et al., 2014). These daily climate con-

ditions at 1 km spatial resolution were downscaled and averaged over the 16 days

between two satellite observations to achieve consistent spatial and temporal reso-

lutions with NDVI. Covariates of elevation (Abatzoglou, 2013) and live basal area

(LEMMA group, 2015) that quantify topography (25) and community competition

(24) were also rescaled to uniform scales for spatial estimation and prediction. Veg-

etation species distribution derived from field surveys during 1997–2014 (U.S. Forest

Service, 2004) was grouped to a genus level. Spatial distribution of dominant species

covering an area greater than 1000 km2 were used to develop species-specific relations

between EWS and observed forest mortality and abnormally low NDVI (ALN).
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Using the DLM and relevant climate data, the time-varying autocorrelation of

NDVI was estimated for EWS detection for each 30 m pixel in Landsat 7 images

for the study area. Temporal and spatial variations in detected EWS were com-

pared with aerially observed mortality provided by the U.S. Forest Service each year

since 2005 (U.S. Forest Service, 2015a). Mortality noted as caused by fire or human

activities were excluded from the analyses. As the forest mortality map from the

aerial surveys delineates geospatial polygons within which some rather than all of

the trees died whereas EWS provides a pixel-based estimate at a 30 m resolution, the

comparison may introduce errors due to the spatial scale mismatch. Hence, compar-

ison of EWS was also performed against incidence map of ALN, which has the same

resolution as EWS and could be associated with leaf shedding or vegetation die-off

(Breshears et al., 2005; Brodrick and Asner, 2017). Hereafter, ALN represents the

occurrence of NDVI lower than a threshold, lasting for at least half of the time in

the following 3 months. This threshold is set equal to the lower 20th percentile of

all the observed NDVI values in that month at a given pixel location. Sensitivity

analyses were performed on the thresholds used to quantify both EWS and ALN.

Results suggest that the main conclusions presented here are robust to the choice of

thresholds (Appendix C Section 7).

4.2.3 Spatial-temporal estimation and prediction.

Temporally, the total fraction of area showing EWS and the average EWS duration

for each species within the entire study area were used to explain and predict mor-

tality area across years. For years of 2005–2015, all pixels in the study area except

for those affected by fire within three years were aggregated to assess the coefficient

of determination (R2) of temporal estimation. For prediction, one of the eleven years

was taken out each time and then predicted based on relations developed using the

rest of the years. Then the accuracy was computed by comparing the predictions
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with the observations. Estimation and prediction accuracies using different combi-

nations of EWS characteristics and lead times were examined (Figure 4.5, Appendix

C Figure C.51). Spatially, as the mortality area is highly zero-inflated, mortality

occurrence and intensity was modeled separately using a Gaussian model and bino-

mial model respectively. Candidate predictors include the fraction of area showing

EWS, EWS duration, basal area and elevation in each pixel. Among the linear,

quadratic and interaction terms of these predictors, the most informative predictors

were selected based on the Bayesian Information Criterion (BIC) for each species

respectively (Appendix C Table C.51). Apart from the selected predictors, a spatial

Gaussian process was also incorporated to describe spatial similarity among close

neighbors. The point-based Gaussian process model is expressed as follows.

ypsq “ xT β ` wpsq ` σ (4.3)

where ypsq is mortality intensity at location s in the Gaussian model and the logit of

mortality occurrence probability in the binomial model; x is a vector containing the

selected predictors at location s and β contains the corresponding coefficients; wpsq is

the spatial effect of a Gaussian process with an exponential covariance function; and σ

is the residual. Due to the distinct relations between EWS and mortality area among

species (Figure 4.4), this spatial model was fitted for each of the dominant species

separately. For spatial estimation, the model was fitted for mortality occurrence

and log-transformed intensity in each year using the functions spGLM and spLM

respectively in the “spBayes” software (Finley et al., 2015) in R (R Core Team,

2017). A non-informative flat prior was used for β; and priors for wpsq were obtained

from empirical variogram. Estimates were computed using posterior means of β and

wpsq from 104 Markov Chain Monte Carlo samples after a 2000 burn-in period. For

spatial prediction, β was set as the coefficient of linear regression using data from

all pixels and years; and the spatial structure wpsq was considered as a random
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walk from that of the previous year (Gelfand et al., 2005), with the mean spatial

surface unchanged. In this way, the spatial distribution of mortality occurrence and

intensity in a given year can be predicted using only historical data, i.e., predictors

observed at given lead time and the mean spatial structure from the most recent

year. Spatial accuracies for mortality occurrence in each year were assessed with

the overall accuracy (ACC), i.e., the summation of true positive and true negative

divided by the total number of samples, and the area under the receiver operating

characteristic curve (AUC); accuracies for mortality intensity were assessed using

Bayesian coefficient of determination (R2) (Gelman et al., 2018).

4.3 Results

4.3.1 An example of EWS detection

An example application of the DLM on a pixel in the southern Sierra dominated by

pines shows that the autocorrelation in NDVI time series became abnormally high,

i.e., exceeded the long-term average of its 80th percentile of the uncertainty range

after October 2012 (Figure 4.1b). Abnormally low NDVI (ALN) that may indicate

foliage shedding was identified in September 2014 (Figure 4.1a) and eventual mor-

tality was observed in July 2015. No mortality or fire was observed in the previous

years. The presence of abnormally high autocorrelation, i.e., reduced resilience, from

October 2012 onwards serves as a EWS, with lead times of 23 months and 33 months

to ALN and mortality respectively in this case. Although high autocorrelation is a

typical signature of critical slowing down, it does not guarantee the occurrence of

critical slowing down and an impending critical transition, i.e., it is necessary but

not sufficient. To further examine the representativeness of EWS for critical slowing

down, an independent analysis of NDVI data within the context of a nonlinear dy-

namic model of vegetation dynamics with two stable states was conducted. The two

stable states in the model represent an existing vegetation cover and an alternative
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state (Scheffer et al., 2001). The analysis suggests that during the period when EWS

was identified, the system slowed down and the basin of attraction shrank (Appendix

C Section 3). These shifts represent reduced recovery rate and a higher likelihood of

a switch to an alternative state under stochastic perturbations. The occurrence of

critical slowing down in the NDVI data during the EWS period within this model

provides an additional affirmation for using the empirically derived EWS to predict

abrupt transitions.

4.3.2 Fraction of area showing EWS

During 2005–2015, the Palmer drought severity index (PDSI) (Dai et al., 2004a)

indicated that the state of California underwent two major droughts spanning 2007

to 2009 and 2012 to 2015 (Figure 4.2a). For the entire study area, the fraction of area

with observed mortality intensity greater than 1 tree per acre (U.S. Forest Service,

2015a), referred as mortality area hereafter, remained below 2% during the first

drought but rapidly increased to 6.7% in 2015 (Figure 4.2a). This sharp increase in

mortality area during the second drought was in contrast to the temporal variation of

PDSI, which gradually increased during 2012–2014 and remained around a high value

afterward. Notably, the temporal pattern of mortality follows a typical signature of

critical transition under slowly varying drivers (Dakos et al., 2015). Remarkably, the

fraction of area showing EWS exhibited similar temporal variation, with the areal

fraction remaining around 10% during the first drought but then increasing to a high

value of 16% by 2015 (Figure 4.2b). The computed EWS area was generally larger

than the mortality area, indicating some trees operated under low resilience without

loss of life. The extent of area with EWS and ALN (Figure 4.2c) depends on the

thresholds used to identify abnormally high autocorrelation and ALN (Appendix C

Section 7). However, all the considered thresholds result in temporal trajectories

of area exhibiting EWS to follow a similar pattern as ALN and mortality. Such
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Figure 4.1: (a) NDVI time series of a pixel in southern Sierra, CA. Red dots rep-
resent NDVI lower than the 20th percentile after considering seasonality. (b) Mean
and uncertainty range of time-varying autocorrelation estimated using DLM. Red
triangles show the identified early warning signal (EWS) when the mean autocorre-
lation exceeds a threshold (gray dashed line), calculated as the long-term (excluding
a 2-year warm-up period) average of the upper boundary of the uncertainty range.
Shaded time ranges indicate the two droughts based on Palmer Drought Severity
Index. “00” in the x-axis denotes January 1st, 2000.

prominent temporal correspondence highlights the potential of using low resilience

as a EWS to track inter-annual variations in forest mortality.

4.3.3 Lead time of EWS

For areas where EWS was detected before the observed mortality, 75% of the cases

exhibited EWS more than 6 months before mortality; 25% of the cases showed EWS

more than 19 months before mortality (Figure 4.3a). When compared with detected
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Figure 4.2: (a) Monthly Palmer Drought Severity Index (PDSI) (Dai et al., 2004a)
for the state of California from 2005 to 2015 (black line); and fraction of area with
tree mortality (red line) from annual aerial survey. (b) Fraction of areas exhibiting
EWS (blue line) and with observed tree mortality (red line). (c) Fraction of area
exhibiting EWS (blue line) and fraction of area with abnormally low NDVI (ALN,
dark red line).“2006” in the x-axis denotes January 1st, 2006.

ALN (Figure 4.3b), EWS was identified earlier in 87% of the cases and 9 months

earlier in 50% of the cases, highlighting the advantage of the resilience-based EWS

over the drop in greenness to predict mortality. Among differing species, the lead

time of EWS exhibited little difference with respect to mortality (Figure 4.3a) but

larger difference with respect to ALN (Figure 4.3b). For example, Juniperus and

Quercus experienced ALN much sooner after the first occurrence of EWS compared

with Abies and Pinus, possibly due to their higher tendency to drop leaves under
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stress (Limousin et al., 2012; Gaylord et al., 2013). As the mid-half of EWS can be

detected between 6 and 19 months ahead of mortality, it may potentially be used to

predict near-term forest mortality.
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Figure 4.3: (a) Exceedance probability of the time difference from the first oc-
currence of EWS to observed mortality, when EWS is detected. For example, more
than 75% of the cases had EWS 6 months earlier than the time when mortality was
observed. (b) Exceedance probability of the time difference from the first occurrence
of EWS to abnormally low NDVI (ALN), when EWS is detected. Black solid lines
in both figures represent the entire surveyed area; colored dashed lines represent the
area dominated by a major species within the surveyed area.
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4.3.4 Spatial-temporal estimation and prediction

Throughout the entire study area, mortality area and ALN area in each year were

positively correlated with EWS area (p ă 0.05) (Figure 4.4a,b, black dots). How-

ever, they did not exhibit an apparent relation to the duration of EWS (Appendix

C Section 4). The relation between EWS area and mortality area differed among

the seven dominant species in the study area (Figure 4.4a,b, colored triangles). For

example, for Quercus (oak), Lithocarpus (tanoak), Pinus (pine) and Picea (spruce),

10% of EWS area corresponded to 0.1%, 0.6%, 1.4% and 6.5% of mortality area,

respectively. These differences imply that oaks are more likely to survive under low

resilience than spruces and pines. The result is consistent with previous studies

conducted in the western U.S., where isohydric species such as pines and spruces

were found to succumb at a higher frequency during prolonged drought, possibly

due to stomatal closure (Mueller et al., 2005; McDowell et al., 2008); whereas aniso-

hydric species such as junipers and oaks experienced less mortality partly because

of smaller likelihood of stomatal closure and advantages arising from adjustments

of fine root density and leaf area (McDowell et al., 2008; Munné-Bosch and Alegre,

2004). Notably, the correlations between EWS area and mortality area vanished

when aggregating all species together even if they were located in the same eco-

climate region (Appendix C Section 4). This distinction suggests that resilience

signatures are species dependent. The direct implication is that species distribution

information is necessary when translating detected EWS into mortality area.

Temporally, with a zero lead time, i.e., at the same time point when mortality was

observed, 96% of the interannual variation in mortality area for the entire study area

was explained using species-specific quadratic functions of EWS area (Figure 4.5).

For lead times of 3, 6, 9 and 12 months, i.e., using EWS area detected months earlier

than observed mortality, the explanation accuracy gradually decreased to 91%, 77%,
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Figure 4.4: Species-specific relations between the fractional area showing EWS
and (a) fractional areas with mortality and (b) abnormally low NDVI (ALN) across
years of 2005–2015 (one dot per year). Major species covering an area greater than
1000 km2 are plotted. Solid trend lines denote significance level of p ă 0.01 and
dashed trend lines denote significance level of p ă 0.05. Trend lines are not plotted
for species without significant relations.
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Figure 4.5: Temporal estimation (solid lines) and prediction (dashed lines) accura-
cies derived from the coefficient of determination (R2) using EWS area only (blue),
and both EWS area and duration (red) with different lead times. Estimation accu-
racy is computed using the regression relation obtained based on data of all years,
while prediction accuracy is obtained using leave-one-out cross validation strategy.

33% and 41% respectively (Figure 4.5, blue solid line). Prediction accuracy was

evaluated by excluding a year out one at a time from the regression, and evaluating

mortality area for that year. Prediction accuracy was found close to the estimation

accuracy for lead times smaller than or equal to 3 months, but dropped to around

zero with longer lead times (Figure 4.5, blue dashed line). Additional consideration of

EWS duration in the regression improved both estimation and prediction accuracies.

For example, the prediction accuracy for a lead time of 6 months improved from 21%

to 73%. Adding a quadratic term of EWS duration or an interaction term of EWS

area and duration did not significantly improve the accuracy (Appendix C Section

5). In summary, temporal variation of mortality area can be reasonably explained

and predicted by EWS area, although the accuracy decreases with longer lead times.

The accuracy can be further improved by additionally considering EWS duration,

especially when using lead times longer than 6 months.

Spatially, estimation accuracy of mortality was analyzed at multiple spatial reso-
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lutions ranging from an eco-climate region scale to 1/2 degree, 1/8 degree and 3 km

scales. As the mortality area for each pixel is highly zero-inflated, following (Young

et al., 2017), mortality occurrence, i.e., whether mortality area is greater than 0.1%,

and mortality intensity, i.e., the magnitude of mortality area for pixels with mor-

tality occurrence, were modeled separately (see Methods). In addition to previously

studied variables such as spatial heterogeneity in topography (Tai et al., 2017) and

community competition (Young et al., 2017) that are known to influence the spatial

pattern of mortality, contribution of EWS area and duration were also found to be

crucial based on the Bayesian Information Criterion (BIC, Appendix C Section 5).

For years from 2005 to 2015, at a spatial resolution of 1/8 degree and a 6-month lead

time, the selected variables provide overall estimation accuracies of 0.89–0.93 and

area under the receiver operating characteristic curve (AUC) of 0.61–0.71 for mor-

tality occurrence, and coefficient of determination (R2) of 0.41–0.59 for mortality

intensity. The estimation performance decreases with finer spatial scale (Appendix

C Section 6). For example, 69%, 57%, 53% and 47% of the spatial variation in mor-

tality intensity can be explained at spatial scales of eco-climate region, 1/2 degree,

1/8 degree, and 3km, respectively for the median year. Such decrease could result

from the larger influence of stochastic perturbation at finer scales (see Discussion),

and spatial scale mismatch between polygons delineating mortality area and grids

used to aggregate EWS characteristics. As the exact locations of dead trees within

polygons were not identified, the difference in actual mortality occurrence and in-

tensity among fine grids may not be seen from mortality maps. Small areas that

underwent mortality may also get omitted in mortality maps (Forest Health Moni-

toring Program, 1999), thus undermining accuracies at fine resolutions. Notably, at

a 1/8 degree resolution, compared with mortality observed in 2009 (Figure 4.6a) and

2015 (Figure 4.6d) drought years, EWS characteristics together with information on

topography and community competition can capture the spatial gradient of mortal-
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2009

2015

Figure 4.6: Observed (a, d), estimated (b, e) and predicted (c, f) mortality intensity
in 2009 (a, b, c) and 2015 (d, e, f). Estimation was conducted using EWS detected
with a zero lead time and prediction was conducted using EWS detected 6 months
ahead. Both estimated and predicted mortality intensity was computed using a
Gaussian process model considering predictors of EWS, elevation and basal area and
a spatial correlation structure (see Methods).

ity within each year (Figure 4.6b, e), as well as the overall higher mortality intensity

in 2015. Spatial prediction of mortality, even using EWS detected 6 months ahead

of observation, showed that the overall spatial gradient and differences between the

two drought years were ably captured (Figure 4.6c,f). However, mortality rates were

higher than predicted in the southern Sierra and the northeast of the study area in

2015 (Figure 4.6d).
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4.4 Discussion

A novel approach to detect low-resilience based EWS is proposed. The lead time of

EWS and its ability to estimate and predict forest mortality are examined. Given

that EWS relies on the physical phenomenon of critical slowing down near a tipping

point, its detection is made possible by integrating a theoretical basis of resilience

of nonlinear dynamical systems approaching a tipping point (Scheffer et al., 2009),

a statistical technique for inferring time-varying autocorrelation (Prado and West,

2010), and use of ever-proliferating high spatial resolution remote sensing images of

NDVI. Here the tipping point is forest mortality due to drought.

The reduction in the resilience before climate-induced mortality can also be

viewed through the lens of physiological response of vegetation under stress. During

drought, heat stress and water deficit deplete plant water content (Brodrick and As-

ner, 2017), induce malfunction of plant hydraulic system due to cavitation spread,

and restrict carbon uptake and transport via stomatal closure (McDowell, 2011).

These stresses could further limit the capability of plants to refill cavitated xylem

and replenish carbon storage to support metabolism and growth (McDowell et al.,

2011), thus handicapping the recoverability from drought. As these responses are

highly diverse across time and space, in part due to nonlinear interactions between a

number of physical controls such as species properties, soil and nutrient conditions,

community competition and acclimation (Sala et al., 2010), significant gap exists

between mortality and climate stress metrics such as climate water deficit (Anderegg

et al., 2015; Young et al., 2017). In contrast, the impact of the aforementioned

stressors can be expressed as a slowed recovery rate of photosynthetic capability and

foliage biomass, which can be captured in NDVI dynamics (Vicente-Serrano et al.,

2013). As the derived dynamic metric allows detection of low resilience directly from

NDVI time series, it circumvents the uncertainties inherent in prediction of mortal-
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ity based on climate stress metrics alone. Furthermore, EWS provides predictability

without relying on the prediction of climate conditions given its dependence on in-

creased autocorrelation.

While the results demonstrate the potential of EWS to capture the spatial-

temporal variations in ALN and mortality over a range of parameters used to detect

EWS (Appendix C Section 7) and across both snow-affected and snow-free regions

(Appendix C Section 8), two major challenges are apparent. The first is the rep-

resentativeness of the identified resilience signal based on autocorrelation of NDVI,

which can be impaired by missing data on cloudy and snow days, and uncertainties

inherent in NDVI data, such as those due to measurement error, varying atmospheric

composition over time and mixed signal from understory species. The effectiveness of

EWS may also be affected by autocorrelation signature in latent driving factors other

than the considered climate conditions, such as local nutrient availability and biotic

interactions with microbes and insects. In addition, as the relation between EWS

and mortality is found to be species-specific, uncertainties in species distribution map

and coexistence of multiple species may impair the accuracy in EWS. Second, and

perhaps more importantly, is the influence of stochastic perturbations on vegetation

stress within the lead time period and across space. While low resilience indicates

a higher probability of state transition for given stochastic perturbations, mortality

may still occur without reduction in resilience if climate conditions are unfavorable

during the lead time and vice versa. This explains lower accuracies using EWS for

longer lead times (Figure 4.5). Similarly, mortality may also intensify at locations

with moderate resilience due to localized insect/pathogen attack. This in fact is

noted as the major damage causal agent for 83% of forest mortality in the study

area (U.S. Forest Service, 2015a). Notably such outbreaks are strongly influenced

by climate-induced stresses, as limited carbon uptake and transport during drought

restrict resin production, which is known to be a major defense agent against bi-
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otic attack (Sala et al., 2010; McDowell, 2011; Novick et al., 2012). The increase

in plant susceptibility further promotes insect/pathogen population (Gaylord et al.,

2013). While these perturbations reduce the prediction accuracy of EWS for mor-

tality, given their general dependence on climate-induced stresses, the influence is

smoothed out at coarser scales, resulting in a robust relation between low resilience

and mortality.

Future effort may seek to improve prediction with long lead times and fine spatial

scales by combining EWS with predicted climate conditions, hydrological states, and

knowledge of insect/pathogen habitation and mechanisms of infestation initiation

and propagation during the lead time period. EWS based predictions can also benefit

from more accurate data of species distribution, tree density and basal area. Notably,

the lead time of EWS with respect to ALN and mortality mostly lies within two years

(Figure 4.3), similar to the time scale of recovery from drought (Schwalm et al.,

2017). Such consistency in time scales implies comparable probabilities of reaching

full recovery or mortality starting from a stressed state. Further inquiry into the

physiological controls on low resilience and their evolvement to eventual recovery or

mortality are necessary. Investigation in this regard may involve comparison of the

low resilience signal with physiological metrics observed either in situ, such as plant

water potential and stomatal conductance, or from remote sensing, such as plant

water content (Brodrick and Asner, 2017) and solar-induced chlorophyll fluorescence

(Walther et al., 2016). Improved understanding of physiological controls on reduced

resilience will facilitate prediction of abrupt changes in vegetation cover. Despite the

aforementioned challenges, the results point toward significant opportunities ahead

given the apparent spatial and temporal associations between the detected EWS and

actual mortality. The lead time of EWS will allow forest managers to assess resource

risks, and possibly prescribe approaches to mitigate insect and fire risks, and restore

stand health through prescribed burning, variable density thinning, and altering age
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structure and species composition (Churchill et al., 2013; Hessburg et al., 2016).

The presented framework can potentially be used for live monitoring of forest health

under drought (Trumbore et al., 2015), and near-term prediction of climate-induced

mortality in most forested regions of the world.
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5

Influence of plant hydraulics on evapotranspiration

5.1 Introduction

The significance of plant responses to water stress is not in dispute when evaluat-

ing water, carbon and energy exchanges between the biosphere and the atmosphere

(Vicente-Serrano et al., 2013; Settele et al., 2014). How to represent these responses

continues to draw research attention and frames the scope of this study. Guided by

plant functional types (PFTs), most current Earth System Models (ESMs) empir-

ically restrict transpiration with reduced root-zone soil moisture based on limiting

functions assigned to each PFT (Wullschleger et al., 2014). Partial support for

this representation is provided by elementary physiological principles. Guard cells

controlling stomatal aperture respond to leaf water potential, an ‘internal’ state rep-

resenting the integrated outcome of soil-plant hydraulics, which in turn responds

to root-zone soil moisture. Two implicit assumptions embedded in the empirical

representation are: (1) variation of leaf water potential is surrogated to variation

of root-zone soil moisture, and (2) a set of plant hydraulic traits (HTs) based on

PFT are sufficient to capture water use strategies under stress across various biomes.
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However, given the large variability in HTs (Anderegg, 2015; Franks et al., 2018)

and nonlinear co-variation in the dynamics of soil moisture and leaf water potential

(Sperry et al., 2002, 2016), the empirical representation commonly used to estimate

evapotranspiration (ET) is expected to lead to significant biases (Franks et al., 2018;

Anderegg et al., 2017; Trugman et al., 2018). These errors can be propagated into

the estimation of the overall carbon sink strength of ecosystems, water resources

available for groundwater and streams, and energy partitioning between sensible and

latent heat fluxes that could impact the extent of heat stress during drought (Konings

et al., 2010, 2011; Manoli et al., 2016). Aforementioned limitations highlight the need

for improved model representation of transpiration that integrates the regulation of

plant hydraulics on stomatal kinetics.

Studies investigating the roles of plant hydraulics on evapotranspiration have

been scarce. This is in part due to the scarcity of HT measurements, their cross- and

within-species variability (Anderegg, 2015), and the gap between the scales at which

HTs are measured and used for predictions. To address these challenges, this chapter

uses a model-data fusion (MDF) approach to obtain the most likely HTs that yield

results consistent with observations at a stand scale. Based on the estimated HTs, a

plant hydraulics model is parameterized and compared with a widely used empirical

stomatal conductance model (without plant hydraulics) to evaluate its impact on

evapotranspiration across land cover and climate types.

5.2 Methods

5.2.1 Soil-plant continuum model

A soil-plant continuum model adapted from (Liu et al., 2017) is used here to estimate

soil evaporation and plant transpiration by solving energy balance on the soil and leaf

surfaces respectively (Campbell and Norman, 1998). Two different configurations of

stomatal conductance, a key for estimating transpiration, are considered. The two
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configurations are an empirical model (Oren et al., 1999) and a hydraulics model

(Katul et al., 2009a; Manzoni et al., 2011; Liu et al., 2017). In the empirical model,

gs “ gs,ref p1´m logpDqqβpθq (5.1)

where gs is stomatal conductance; gs,ref is the reference stomatal conductance under

VPD = 1 kPa; m is the sensitivity of gs to VPD (D). βpθq P r0, 1s is a piecewise

linear function representing soil moisture limitation that has been widely used in

ESMs (Trugman et al., 2018).

βpθq “
θ ´ θw
θ˚ ´ θw

, if θw ă θ ă θ˚ (5.2)

In the hydraulics model, the stomatal conductance is calculated by optimizing the

net carbon gain (Katul et al., 2009a).

gs “ argmax fcpgsq ´ λfepgsq (5.3)

where fc and fe are carbon gain and water loss per leaf area respectively. The

marginal water use efficiency λ responds to leaf water potential (ψl):

λpψlq “ λWW exppb0ψlq (5.4)

where λWW is the marginal water use efficiency under a well-watered condition; and

b0 denotes the sensitivity of λ to ψl. ψl is controlled by plant water transport through

the hydraulics system from root to leaf (Sperry et al., 2017).

Tr “

ż ψl

ψr

gppxqdx (5.5)

where Tr is transpiration per ground area; ψr is root water potential; and gp is xylem

conductance following a vulnerability curve:

gppxq “ gp,max

„

1`

ˆ

x

ψ50

˙a´1

(5.6)
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where gp,max is the maximum xylem conductance; ψ50 is the plant water potential

corresponding to 50% loss of percentage loss of conductivity (PLC); and a is the

shape parameter of the vulnerability curve.

Next, the connection between the empirical model and the hydraulics model

is elaborated. Under light-saturated condition, solution of Equation (5.3) can be

linearized (Katul et al., 2009a) as below

gs “ α

«

´1`

ˆ

ca
a0λpψlq

˙1{2

D´1{2

ff

(5.7)

where α contains parameters describing biochemical demand for CO2 (Farquhar

et al., 1980); ca is atmospheric CO2 concentration; a0 “ 1.6 is the relative diffu-

sivity of water vapor with respect to CO2. The sensitivity of gs to VPD is reflected

in the term D´1{2, which can be expressed using a Taylor series expansion (Katul

et al., 2009b):

D´1{2
“ 1´

1

2
logpDq `Oplog2

pDqq (5.8)

Combining Equations (5.7) and (5.8),

gs
gspD “ 1q

« 1´
1

2

Φ

Φ´ 1
logpDq (5.9)

where

Φ “

ˆ

ca
a0λpψlq

˙1{2

(5.10)

The term Φ{p2pΦ´1qq is equivalent to the m parameter in Equation (5.1), describing

the sensitivity of gs to VPD. Note that although m is static, Φ{p2pΦ´1qq varies with

ψl.
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5.2.2 Datasets

The soil-plant continuum model is applied at Duke Forest (US-DK3) and other 24

FLUXNET sites (FLUXNET, 2016) across the globe (Table 5.1). The sites are se-

lected based on the availability of soil moisture, ET, and meteorological data for

at least two years. Furthermore, transpiration at these sites accounted for at least

half of the total ET. ET observations only during the growing season and days with

no precipitation and temperature higher than 0 ˝C are used. April to October and

November to March are considered as the growing seasons for sites in the Northern

Hemisphere and the Southern Hemisphere respectively. These data filtering crite-

ria allow robust estimation of model parameters and limit uncertainty introduced

by large soil evaporation, snow cover, and understory species. Data needed to pa-

rameterize the model include plant hydraulic traits, soil properties, leaf area index,

canopy height, and rooting profile. Plant hydraulic traits and soil properties are

retrieved using Markov Chain Monte Carlo (MCMC, Section 5.2.3). Other informa-

tion is obtained as described in Appendix B. It is noted that improved datasets of

canopy height (Healey et al., 2015) and maximum rooting depth (Fan et al., 2017)

are used.

5.2.3 MCMC sampling

The parameters of gs,ref , m, θw and θ˚ for the empirical model, and the hydraulic

traits of λWW , b0, gp,max, ψ50, and a are retrieved using a Markov Chain Monte Carlo

(MCMC) method. In addition, for both models, constant soil moisture is used as

the boundary condition (soilbc) of the soil column containing roots. The constant

boundary soil moisture can be a result of groundwater, which has been shown to

regulate the maximum rooting depth used in this study across biomes (Fan et al.,

2017). This boundary condition, together with the nonlinearity parameter in soil

water retention curve (soilb)(Clapp and Hornberger, 1978) are also estimated using
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Table 5.1: Locations and plant functional types (PFTs) of the FLUXNET sites used
in this study. PFTs of the sites include evergreen broadleaf forests (EBF), mixed
forests (MF), evergreen needleleaf forests (ENF), croplands (CRO), and grasslands
(GRA).

Site ID Latitude Longitude PFT
AU-Wac -37.43 145.19 EBF
AU-Wom -37.42 144.09 EBF
BE-Vie 50.31 5.99 MF
CA-SF1 54.48 -105.82 ENF
CH-Oe2 47.29 7.73 CRO
CN-Din 23.17 112.54 EBF
CN-Qia 26.74 115.06 ENF
DE-Hai 51.08 10.45 DBF
DE-Obe 50.79 13.72 ENF
DK-Sor 55.49 11.64 DBF
FI-Hyy 61.85 24.29 ENF
FR-Gri 48.84 1.95 CRO
IT-Isp 45.81 8.63 DBF

IT-PT1 45.20 9.06 DBF
IT-Ren 46.59 11.43 ENF
NL-Hor 52.24 5.07 GRA
NL-Loo 52.16 5.74 ENF
RU-Fyo 56.46 32.92 ENF
US-Blo 38.90 -120.63 ENF
US-Me2 44.45 -121.58 ENF
US-MMS 39.32 -86.41 DBF
US-NR1 40.03 -105.55 ENF
US-UMB 45.56 -84.71 DBF
US-UMd 45.56 -84.70 DBF

MCMC. MCMC allows consideration of uncertainties associated with deep-layer soil

water availability and influence of macro-pores on soil conductivity and soil-root

conductance.

MCMC is used to systematically retrieve probability distributions of effective

HTs and soil properties at each of the target sites. Observations in a normal year

and a dry year are used for retrieval as the immediate focus is on evaluate param-

eterizations during moisture stress periods. Here a normal year is considered to be
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one when both annual soil moisture and VPD are within the 25th and 75th per-

centiles. A dry year is when the annual soil moisture falls below the 25th percentile

and VPD is higher than the 75th percentile. For the MCMC, a flat prior distri-

bution from possible HT ranges based on meta-analysis (Kattge et al., 2011) are

provided. A uniform distribution between the wilting point and the full-saturation

is used as the prior for soil boundary condition. A Gaussian prior of soilb is used,

with the mean and standard deviation from (Clapp and Hornberger, 1978) for the

corresponding soil texture at each site. Each observation of daily ET is treated

as independent and identically distributed, following a Gaussian distribution with

a modeled mean and an unknown variance that is to be estimated. Starting from

a set of random guesses, MCMC chains explore the parameter space following the

Adaptive Metropolized Independence Sampling (AMIS) method with parallel tem-

pering. This method is used to tackle the two key challenges in the context of plant

hydraulic response to stress, i.e., strong model nonlinearity and equifinality (Man-

zoni et al., 2013). The AMIS algorithm has been shown to mix efficiently under

the presence of model nonlinearity (Ji and Schmidler, 2013). The parallel tempering

module facilitates identification of multi-modes in the parameter space associated

with equifinality. Twenty independent MCMC chains are used for each site. Within-

and among-chains convergence is diagnosed by Geweke and Gelman-Rubin values

(Brooks and Gelman, 1998). The converged MCMC chains provide joint estimates

of HTs and soil properties. In addition, physiological constraints from meta-analysis

(Anderegg et al., 2017; Martin-StPaul et al., 2017) are also incorporated in the sta-

tistical inference to avoid unrealistic combinations of HTs that nevertheless match

data.
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5.2.4 Parameter identifiability and model evaluation

Retrieved HTs representing effective traits at the stand-scale are compared with

available measurements at a segment-scale. The identifiability, i.e., the extent to

which the marginal posterior distribution of each parameter can be constraint (rel-

ative to its prior range) by ET observation is also analyzed. The identifiability of

each parameter (Ipηq) is quantified as

Ipηq “ 1´
p75pη|yq ´ p25pη|yq

p75pηq ´ p25pηq
(5.11)

where p75pη|yq and p25pη|yq are the 75th and 25th percentiles of the retrieved posterior

distribution for each parameter η; and p75pηq and p25pηq are the 75th and 25th

percentiles of the prior distribution, which is equivalent to half of the prior range

given the uniform prior distribution. Hence Ipηq “ 1 corresponds to point posterior

and Ipηq “ 0 indicates a posterior close to the uniform prior.

Samples of parameters from the retrieved posterior distribution are used to pa-

rameterize both models to estimate ET over the entire record period for the studied

sites. Performances of the empirical model and the hydraulics model are compared.

To further inquire about the impact of incorporating plant hydraulics in ET

estimation, two scenarios are considered: a well-water scenario where the soil is kept

saturated and a reference VPD scenario where VPD is kept as a constant of 1 kPa.

Note that in the second scenario, only the restriction term of VPD on gs is kept

constant, whereas the atmospheric demand varies as the observation. The difference

of ET under real soil moisture and VPD stress from these two presumed scenarios (∆

ET) indicate how much ET is restricted by each of the two hydro-climatic stresses.

Taking advantage of the consistency between the two models as shown by Equations

(5.1) and (5.9), the sensitivity of gs to VPD under different regimes represented by

the two models are also compared.
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5.3 Results

5.3.1 Identification of plant hydraulic traits

To evaluate the model efficacy in identifying HTs, the estimated ψ50 for a given

site is compared to available measurements for the same species. Results for Duke

Forest (US-DK3) (Figure 5.1) illustrates that provided with a wide prior range of ψ50,

the MDF approach identifies a posterior distribution that represents an integrated

property of the stand and is located within the range of ψ50 measured for leaves,

branches, trunks and roots (Johnson et al., 2016). For sites such as IT-Lav and

IT-PT1, the retrieved distribution of ψ50 is consistent with measurements (mostly

at branches) for the dominant species (Figure 5.2). For US-Me2, dual-modes of the

posterior distribution is identified, consistent with the measured values for the two

dominant species, Pinus ponderosa (ψ50 “ ´2.65 MPa (Anderegg et al., 2018) or

´3.92 MPa (Martin-StPaul et al., 2017) ) and Calocedrus decurrens (´7.75 MPa

(Anderegg et al., 2018)). As suggested by the flat posterior distributions, ψ50 is

less identifiable at other sites. This indicates low sensitivity of ET to ψ50, in part

because ET is mostly regulated by soil-root conductance and stomatal kinetics in the

model. Plants at these sites operate with near-zero percentage loss of conductivity

(PLC), thus leading to a minimal constraint of xylem conductivity on transpiration.

In addition, co-existence of multi-species with a wide variety of HTs, such as at

US-Blo, could also contribute to low identifiability of ψ50.

Figure 5.3 shows the identifiability of all the parameters retrieved using MDF.

Given that MDF estimates the parameters through comparison between the modeled

and observed ET, high identifiability also suggests high sensitivity of ET to a given

parameter. It is to be noted that the choice of the prior range of each parameter

affects the magnitude of identifiability (Equation (5.11)). However, as the prior

range covers all possible values of each parameter, the identifiability measures to what
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Figure 5.1: Estimated posterior distribution (shaded blue area) of stand-scale ψ50

at Duke Forest (US-DK3). The black dashed line denotes the prior range provided
for parameter retrieval. Colored vertical lines denote the measured ψ50 at different
segments for the dominant species of Loblolly Pine at the site (Johnson et al., 2016).

Figure 5.2: Estimated posterior distribution (shaded gray area) of stand-scale ψ50

and comparison with available measurements (red lines) for multiple species at the
corresponding sites (Anderegg et al., 2018).

extent that the parameter can be narrowed down from its possible range using MDF.

Although the identifiability varies across sites, the stomatal properties are generally

more identifiable than the xylem properties (Figure 5.3). The marginal water use

efficiency under well-watered condition (λWW ) is found to be the most identifiable

from observed ET, while the shape parameter of the vulnerability curve (a) is the

least identifiable. This could be because that λWW always controls gas exchange,
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whereas the shape of the vulnerability curve plays a role in less fraction of time

mostly under stressed conditions. Notably, ET is found to be equivalently or more

sensitive to the soil hydraulic properties than to the xylem properties. This highlights

the need for quantifying subsurface properties and uncertainties, as misspecification

could result in biased estimates of gas exchanges in spite of accurately measured

plant traits.

Figure 5.3: Identifiability of model parameters, defined as Equation (5.11). The
boxes represent the variation of parameter identifiability across the studied sties.
Blue, green and grey boxes denote xylem, stomatal and soil parameters, respectively.

PFT-based parameterization is widely adopted in ESMs. However, large variation

of HTs exists within the same PFT, which exceeds between-PFT variation for most

traits (Figure 5.4). Such variation could originate from xylem structure, phenological

traits, and water use strategies of different species or the same species but acclimating

to different environmental conditions. At a stand scale, maximum xylem conductance

per unit ground area (gp,max) can vary by orders of magnitude with sapwood area

and stand density. In addition, the integrated HTs dictating plant water use can

also be altered by site-specific interactions of competition and coordination among

plants. The recognized large variation of HTs at a stand scale within each PFT
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highlights uncertainties embedded in biosphere-atmosphere interactions estimated

using PFT-based parameterization.

Figure 5.4: Coefficient of variation for plant hydraulic traits and soil parameters
at sites of evergreen needleleaf forest (ENF) and deciduous broadleaf forest (DBF).
Blue, green and grey bars denote xylem, stomatal and soil parameters, respectively.
Red stars denote between-PFT difference of each trait, calculated as the difference
between the means of each PFT normalized by the standard deviation across both
PFTs.

5.3.2 Effect of plant hydraulics on ET estimation

Based on the optimally parameterized hydraulics and empirical models, daily ET

across the studied sites can be captured by both models with similar R2 ranging

from 0.39–0.90 (Figure 5.5, black dots). However, when only focusing on the high-

VPD periods, i.e., days with VPD greater than its 75th percentile, the empirical

model does not capture ET variation as suggested by low R2 and high RMSE values

(Figure 5.5, red dots). The hydraulics model, however, shows significantly better

performance for these sites during the high-VPD periods. Both models exhibit close
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performance during the low-VPD periods, as suggested by low and similar RMSE

values (Figure 5.5, blue dots). Such difference in model performance during the

sub-periods indicates that in an empirical and a hydraulic model representation, ET

responds differently to the two sources of stress, i.e., soil moisture and VPD. The

impacts of these two sources of stress on stomatal conductance and ET are further

analyzed in Section 5.3.3.

Figure 5.5: Coefficient of determination (R2, first row) and root mean square error
(RMSE, second row) of estimated daily ET using the empirical model (y-axis) and
hydraulics model (x-axis). Model performance is evaluated over the entire growing
season (black dots), high VPD low soil moisture period (HvLs), high VPD high soil
moisture period (HvHs), low VPD low soil moisture period (LvLs), and low VPD
high soil moisture period (LvHs). The high VPD low soil moisture period only
includes days with soil moisture lower than its 25th percentile and VPD higher than
its 75th percentile. Similar criteria are used for other sub-periods.

5.3.3 Restriction of hydro-climatic stresses on ET

Compared to scenarios with saturated soil and reference VPD of 1 kPa respectively,

for most sites, the hydraulics model suggests less soil water limitation but greater
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VPD limitation on ET than the empirical model (Figure 5.6). Although both models

capture the overall ET variation, the stomatal response to the two stress sources

is different. In the empirical model, the VPD sensitivity (m in Equation (5.1)) is

estimated as 0.63 on the average across the studied sites (Figure 5.7), consistent with

the range of 0.4–0.8 estimated in previous studies (Oren et al., 1999; Novick et al.,

2016). In the hydraulics model, the equivalent sensitivity to VPD (Equation (5.9))

under medium soil moisture (between the 25th and 75th percentiles) is found to be

higher, with an average value of 1.17. Note that this VPD sensitivity is considered

static for each site in the empirical model. In the hydraulics model, however, it

increases with decreasing leaf water potential (Equations (5.9) and (5.10)). Thus

during drought when leaf water potential reduces in response to low soil moisture,

stomata would close more in response to VPD. On the average of the studied sites, the

equivalent VPD sensitivities across sites increase from 0.82-1.44 when soil moisture

is between 25th and 75th percentiles to 0.83-2.30 when soil moisture drops below

its 25th percentile, respectively. Lacking such down-regulation mechanism of plant

hydraulics on VPD sensitivity, the empirical model could result in errors in ET

estimation during high-VPD period especially under low leaf water potential, or

equivalently, high PLC. Across the studied sites, the hydraulics model improves ET

estimation during high VPD low soil moisture period most significantly at the sites

with large difference in VPD sensitivities and high PLC (Figure 5.8).

5.4 Discussion

The chapter implements a model data fusion framework to estimate plant hydraulic

traits at a stand scale, bridging the gap between measurements at a segment scale and

a stand or larger scale relevant to land-atmosphere interactions. As large variation

of traits exist within each PFT, the framework developed here could facilitate better

parameterization scheme of ESMs by integrating models with cross-scale observations
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Figure 5.6: Average ET restricted by soil moisture (blue dots) and VPD (red
triangles) as estimated by the empirical model (y-axis) and the hydraulics model
(x-axis). The restricted ET is calculated as the ET under the presumed scenario
minus ET under observed soil moisture and VPD. The scenarios to calculate soil
moisture restriction is provided with saturated soil moisture, and that to calculate
VPD restriction is provided with a constant VPD of 1 kPa for evaluation of stomatal
conductance.

Figure 5.7: Distribution of VPD sensitivity from the empirical model (parameter
m in Equation (5.1)) across studied sites (blue shaded area). Distribution of VPD
sensitivity from the hydraulics model (Equation (5.9)) when soil moisture is above
its 75th percentile (θ ą θ75, red dashed line), between its 25th and 75 percentiles
(θ25 ă θ ă θ75, red shaded area), and below its 25th percentile (θ ă θ25, red solid
line).
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Figure 5.8: Relation between the improved ET estimation accuracy by the plant
hydraulics model (R2

Hydr.´R
2
Empr.) and the difference between the VPD sensitivities

estimated the hydraulics and empirical models (mHydr. ´mEmpr.) during high VPD
and low soil moisture period across sites. Each dot is color-coded with the average
percentage loss of conductivity (PLC) at the site.

(Konings and Gentine, 2017; Konings et al., 2017).

Although significant efforts have been made in the past to evaluate the influence

of plant traits on water use, soil properties are found to play equally or more im-

portant roles in estimating ET. Through soil-root interaction and deep-layer water

supply, the effect of soil hydraulics could mask out the signatures of plant traits

on water use and hence ecosystem productivity, especially during droughts when

soil-root interaction becomes highly nonlinear and deep-layer water provides major

supply for transpiration. Hence quantification of subsurface properties and hydro-

logic conditions is needed to provide a refined description of ecosystem fluxes and its

response under stress.

Despite that ET simulations from both optimally parameterized empirical and

hydraulics models fit well to the data, they prescribe different sensitivities to hydro-

climatic stresses. Overall, the hydraulics model exhibits a higher sensitivity of stom-
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atal conductance to VPD, which implies that the impact of increasing temperature

and thus VPD on restricting ecosystem water use and productivity can be under-

estimated if not considering plant hydraulics. The even stronger down-regulation

mechanism of VPD under soil water stress, and the fact that leaf water potential

variation cannot be fully resolved by soil moisture variation further underscores the

need for accurate measurement of HTs. Aforementioned discrepancies also highlight

the need to improve the mechanistic representation of plant hydraulics in ESMs to

unravel and predict ecosystem responses to future climate.

It is acknowledged that limitations exist in both models. For example, deep-layer

soil moisture is represented using a lumped bucket model due to lack of observations.

Relevant processes and controls including lateral soil water flux, groundwater access,

hydraulic redistribution, plant water storage, and vertical canopy structures are not

considered in the models. In addition, rooting profile and biochemical properties are

parameterized based on meta-analyses with combinations of PFT and climate type

without considering site-specific variations. These uncertainties could contribute to

systematic errors in ET estimates using both models. However, the parsimonious

representation allows effective retrieval of stand-scale traits even under the challenge

posed by strong model nonlinearity. Further studies are needed to quantify the afore-

mentioned factors and evaluate their impacts on biosphere-atmosphere interactions.
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6

Conclusions

The main results and implications of each chapter are summarized as follows. Di-

rections for future work are also highlighted.

6.1 Summary of results

Chapter 2. Meteorological controls on wetland groundwater dynamics

The goal of this chapter was to analyze the interannual variation of wet-period in

forested wetlands of the southeastern US, and how it is affected by the seasonality

of meteorological conditions. The results show that,

(1) The start date and duration of wet-periods exhibit significant interannual

variations. Among the ten studied wetlands, the start date could be as early as

September or as late as March, and the wet duration could vary by more than 6

months. As multiple ecological functions of wetlands such as greenhouse gas emis-

sions are influenced by wet-periods, it is expected that the ecological functions of

wetlands can also vary significantly through the years.

(2) The annual meteorological conditions could only capture 20%–50% of the
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variations in wet-period characteristics, which, however, can be improved to 60%–

90% using seasonal precipitation and potential evapotranspiration. Limited ability

of annual variables to explain interannual variations in wet-period characteristics

can be attributed to nonuniform influence of seasonal meteorological conditions on

wet-period variations. In the studied wetlands, meteorological conditions in autumn

were identified to be the most dominant in influencing wet-period variations. This

is expected to be true for other forested wetlands in the southeastern US, as hydro-

climatology in the region is characterized by autumn and winter that act as recharge

periods. The results also indicate that for future predictions of wet-period char-

acteristics and associated ecological functions, robust projections of meteorological

conditions at least in the dominant seasons are paramount.

(3) Estimation accuracy of wet-periods was improved when in addition to the

four seasons within a hydrologic year, meteorological conditions in an antecedent

season were also considered. This highlights that inherent hydrologic memory of

the wetlands should be appropriately accounted for while estimating and predicting

interannual wet-period variations.

(4) In the studied wetlands, errors for predicting start date and wet duration

were less than 1 month at a 90% confidence level, indicating that the Bayesian re-

gression and variable selection framework provides an effective approach to predict

interannual wet-period variations. By pairing it with short-term observation exper-

iments, the presented framework could potentially be applied to evaluate long-term

variations in wetland ecological functions.

This chapter highlights an undeniable influence of seasonality and hydrologic

memory on wet-period variations of inland forested wetlands. The presented frame-

work provides a simple, yet effective, approach for estimating and predicting wet-

period variations in inland wetlands. The approach can also contribute to estimating

variations in associated ecological functions in wetlands.
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Chapter 3. Effects of long-term climate trends on forest mortality risk

The goal of this chapter was to develop a soil-plant-atmosphere continuum model

and a metric that captures dominant plant physiological dynamics related to mor-

tality, and evaluate how mortality risk responds to long-term changes in multiple

climate conditions. The main findings are as follows:

(1) The mortality risk quantified as the fraction of time when plant operates with

water potential below a critical threshold or stomatal closure is able to capture the

mortality probability documented at multiple sites across plant functional types and

climate regimes.

(2) Based on projected climate for the mid of 21st century, warming temperature

and shifting precipitation patterns, including annual amount and seasonality, could

intensify the mortality risk by 159% on the average of the studied biomes. How-

ever, such increase extent can be largely alleviated to 21% by concurrent increasing

atmospheric CO2 concentration and specific humidity.

(3) As a result of disparity in hydraulic traits, the risk sources for evergreen

needleleaf forests and deciduous broadleaf forests are mainly stomatal closure and

hydraulic failure, respectively. As stomatal closure risk is found to be more sensi-

tive to temperature increase, mortality risk of evergreen needle leaf forests under

projected climate is expected to increase more than other plant functional types.

This chapter provides a mechanistic foundation for evaluating future responses

of forest mortality risk. The results highlight that ignoring the influence of elevated

atmospheric humidity and CO2 concentration may lead to overestimation of future

forest mortality risk. It is also found that the combined influence of changes in the

studied climate variables on mortality risk is strongly mediated by plant hydraulic

traits. These findings will facilitate decisions about intervention and management of

different forest types under changing climate.
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Chapter 4. Detection of early warning signal of forest mortality

The goal here was to establish a framework to assess time-varying resilience of

forests from high-resolution Normalized Difference Vegetation Index (NDVI), and

evaluate spatial-temporal association between early warning signal, i.e., abnormally

low resilience, with observed forest mortality during 2005–2015 in the state of Cali-

fornia, USA. The main results and implications are summarized below:

(1) Inter-annual variation of forest area that underwent mortality was not directly

associated with drought severity in the study area. Instead, it exhibited a temporal

pattern similar to that of the area exhibiting low resilience or EWS. The EWS

area is generally larger than mortality area, indicating some trees operated under

low resilience without loss of life. The prominent temporal correspondence with

EWS highlights the potential of using low resilience as a EWS to track inter-annual

variations in forest mortality.

(2) For most of the cases where EWS was detected before observed mortality,

EWS can be detected 6 to 19 months ahead of mortality. Notably, for 87% of the

cases, EWS can be detected ahead of reduced greenness as reflected by NDVI. This

result highlights the advantage of EWS to predict mortality before symptoms of

leaf-shedding or canopy dieback occur, thus facilitating necessary resource and risk

management practices.

(3) The temporal variation of EWS area for different species exhibited distinct

relations with mortality area for, suggesting that the resilience signature are highly

species specific. The direct implication is that species distribution is necessary for

translating detected EWS into mortality risk.

(4) Based on the species-specific relations, EWS captures the spatial-temporal

variation of mortality. The prediction accuracies reduce as the lead time increases

and spatial resolution refines. Such decline in performance could result from larger

uncertainties in stochastic perturbations, including hydro-climatic stress and biotic
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attacks, at longer lead times and finer scales.

This chapter develops a novel approach to detect low-resilience based EWS. The

results above highlight EWS’s potential for operational monitoring and near-term

prediction of forest mortality. Further improvement is needed to quantify influences

of stochastic perturbations especially for long lead times and fine spatial scales. In-

vestigation along the line can also benefit from inquiry into mechanisms contributing

to low resilience.

Chapter 5. Influence of plant hydraulics on evapotranspiration

The goal of this chapter was to retrieve plant hydraulic traits at a stand scale using

ET observations and evaluate how plant hydraulics affect stomatal conductance and

ET under hydro-climatic stress. This is achieved by comparing with an empirical ET

model that does not account for plant hydraulics. The main findings and implications

are as follows.

(1) The model-data fusion (MDF) framework identifies plant hydraulic traits, and

they are found to be comparable to segment scale measurements. Stomatal traits are

generally more identifiable than xylem traits from ET observation. Large variation

of plant hydraulic traits is identified across sites, even when they belong to the same

plant functional type (PFT). Such variation indicates uncertainties inherent in PFT-

based parameterization that is commonly used in ESMs. ET across the studied

sites is found to be equally or more sensitive to soil hydraulics compared to plant

hydraulics, highlighting the need for improved measurements and representation of

soil hydraulics.

(2) Both the empirical model and the plant hydraulics model are able to cap-

ture the overall ET variation. However, incorporating plant hydraulics improves ET

estimation under dry conditions with low soil moisture and high VPD i.e., under con-

ditions where plant hydraulic limitation or high percentage loss of plant conductivity

103



occurred.

(3) The improvement of the hydraulics model under dry conditions benefits from

the down-regulation mechanism of leaf water potential on stomatal conductance

that integrates the response to both soil moisture and VPD. This down-regulation

mechanism is significant as leaf water potential drops during drought.

(4) The plant hydraulics model indicates a higher sensitivity of stomatal conduc-

tance to VPD than the empirical model. Such sensitivity can be intensified under

compounded heat and water stress. This finding suggests that the restriction of

ecosystem water use and productivity during drought can be underestimated with-

out considering plant hydraulics.

This chapter highlights the potential of the developed MDF framework to improve

the widely used PFT-based vegetation parameterization in ESMs. The stronger

restriction of VPD on stomatal conductance induced by plant hydraulics, especially

under co-existence of water and heat stresses, underlines the critical role of plant

hydraulics on ecosystem responses to both climate trends and extreme conditions.

6.2 Future work

An outline for future work is presented below.

Effects of wetland water table height on biogeochemical processes

Wetlands act as hot spots of biogeochemical processes including methane emission,

ammonification, and nitrification. These processes are closely connected to climate

variability through water table dynamics in wetlands. Based on the work in Chapter

2 that describes water table dynamics using a fully-distributed hydrologic model,

future study could evaluate the impact of wetland hydrologic conditions on methane

emission and nitrogen processes by combining with field observations and lab exper-

iments.
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Plant susceptibility to compounded stress

Vegetation susceptibility under future climate continues to draw significant research

attention in climate, hydrological, ecological, and physiological sciences. Chapter 3

focused on the response of mortality risk to changing climate. The isolated role of

compounded stress periods such as warmer-droughts whose occurrence is projected

to increase in future (Mazdiyasni and AghaKouchak, 2015; Zscheischler et al., 2018;

Chiang et al., 2018), remains unknown. The impacts of such compounded stress need

to be assessed to further reduce uncertainties in climate and ecological predictions.

The model developed in Chapter 3 can allow further exploration into this aspect.

Preferred Plant Traits against climate induced stress

Acclimation and adaptation of plants properties is another pivotal aspect of predict-

ing vegetation dynamics. In this regard, perturbation analysis of plant properties

can be used to generate hypotheses about the most efficient acclimation strategies for

different tree species and traits. Such investigations will provide base-line knowledge

into the potential changes of forest composition and cover in response to changes

in climate, and thus also shedding light on the sustainability of forest management

practices and ecological restoration.

Mechanism and spatial interactions governing forest resilience

The mechanisms governing forest resilience and mortality under extreme climate

conditions remain an uncharted research territory. Based on the work described in

Chapter 4, the detected EWS can be compared with multi-scale physiological met-

rics such as in-situ plant water potential and stomatal conductance, and remotely

sensed plant water content and solar-induced chlorophyll fluorescence. Such com-

parison will provide clues on physiological mechanisms contributing to resilience. As

discussed in Chapter 4, forest mortality still exhibited clear spatial correlation struc-

ture across the state of California even after accounting for spatially heterogeneous
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properties such as topography, soil, vegetation, and climate. This implies that dy-

namics of forests are not spatially independent. Instead, interconnections possibly

exist across large scales due to hydrologic connectivity, community competition, in-

sect and pathogen initiation and propagation. Such spatial dependence structure

can be empirically quantify using spatial statistics. Process based models, especially

distributed hydrologic model as used in Chapter 2, can be combined to investigate

the roles of spatially connected soil moisture and groundwater flow in forest resilience

and mortality.

Plant hydraulics control on carbon assimilation and atmospheric feedbacks

How to represent plant responses to water stress responses in Earth System Mod-

els (ESMs) has been an active research topic. Chapter 5 addresses the impacts of

incorporating plant hydraulics on ET estimation. The model data fusion developed

here, which bridges the gap between segment-scale measurements and stand-scale

traits, may be used to further explore the influence of plant hydraulics on ecosystem

productivity under stress, and the feedbacks to the atmosphere. The atmospheric

boundary layer model developed in Chapter 3 can be integrated here to further ex-

plore under what hydro-climatic conditions and hydraulic traits are heat stress more

likely to co-occur with water stress. The investigation will also examine whether

there exists some passive self-regulation exerted by plants to alleviate water stress

via atmospheric feedbacks.

Impacts of vegetation dynamics on water resources and quality

The tools developed and implemented in this dissertation can be integrated to ob-

tain integrated estimates of water, vegetation and nutrient dynamics by coupling

distributed hydrologic models (DHMs) such as PIHM with vegetation and biogeo-

chemical models. As the water use strategies of different plant species, especially

during droughts, are often not well captured by a lumped models, the plant hy-
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draulics model developed in Chapter 3 can be coupled with a DHM to study this.

In the long-term, the sensitivity of vegetation to climate variations may change over

time, for example due to acclimation of plant properties, alteration of species compo-

sition, and depletion/increment of mineralized soil nutrients, thus resulting in errors

in long-term hydrologic predictions. Eco-climate regions with higher sensitivity to

climatological variations and change can be identified using the Bayesian time series

analysis method established in Chapter 4. This will facilitate discovery of locations

where DHM coupling with dynamic vegetation models is needed for improved water

resources prediction and risk assessment.
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Appendix A

Supporting information for chapter 2

A.1 Derivation of the posterior distributions for Bayesian regression
and variable selection

Let X be the nˆ p matrix of px1,x2, . . . ,xnq
T, where xj “ pxj,1, xj,2, . . . , xj,pq, pj “

1, . . . , n). Let β “ pz1b1, . . . , zpbpq
T, then based on Equation (2.1)

ty|X,β, σ2
u „ Multivariate normalpXβ, σ2Iq (A1)

Hence the likelihood of the time series y is

ppy|X,β, σ2
q9exp

"

´
1

2σ2

“

yTy ´ 2βXTy ` βTXTXβ
‰

*

(A2)

Considering that our goal is to estimate and predict y usingX, one needs to estimate

the parameters β and σ2.

The prior distributions for z “ pz1, . . . , zpq
T,β “ pβ1, . . . , βzq

T and σ2 are ob-

tained as follows. For each zj, a non-informative Bernoulli prior of Prpzj “ 0q “

Prpzj “ 1q “ 1{2 is used. For β and σ2, Zellner’s g-prior (Zellner, 1986) and inverse-
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gamma prior is applied respectively (Equation (A3)).

zj „ Bernoullip1{2q

βz „ Multivariate normalp0, gσ2
pXT

zXzq
´1
q (A3)

σ2
„ Inverse-gammapν0{2, ν0σ

2
0{2q

where for any given z with pz being the non-zero entries, βz is a pz ˆ 1 vector

consisting of all non-zero entries in z; and Xz is a n ˆ pz matrix corresponding

to non-zero entries of z. The Zellner’s g-prior is a widely used prior distribution

for regression parameters, which provides a closed-form representation of marginal

likelihoods and hence is computationally efficient (Liang et al., 2008). Specifically,

unit information prior (Kass and Wasserman, 1995), a type of weakly informative

prior, is provided for βz and σ2 by choosing prior parameters of g “ n, ν0 “ 1, σ2
0 “

σ̂2
ols, where σ̂2

ols “ py ´Xβq
Tpy ´Xβq{pn´ pq is the ordinary least squares (OLS)

estimate of σ2. The multivariate normal prior for βz and the inverse-gamma prior

for σ2 are semi-conjugate for the multivariate normal model (Equation (A1)), which

enables the posteriors to be derived analytically.

Next, the posterior distributions for z,β and σ2 are derived. According to the

Bayes theory, the posterior of z can be computed using:

ppz|y,Xq “
ppzqppy|X,zq

Σz̃ppz̃qppy|X, z̃q
(A4)

where z̃ denotes all the possible values of z, i.e., 0 and 1. For each zj, in order to

calculate the posterior probability for zj “ 1, let za “ pz1, . . . , zj “ 1, . . . , zpq
T and

zb “ pz1, . . . , zj “ 0, . . . , zpq
T. Then based on Equation (A4), the posterior odds of

za and zb are calculated using:

oj “
ppza|y,Xq

ppzb|y,Xq
“
ppzaq

ppzbq

ppy|X, zaq

ppy|X, zbq
(A5)
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where the marginal likelihood of z is:

ppy|X, zq “

ż ż

ppy, b, σ2
|X, zqdbdσ2

“

ż ż

ppy|b,Xqppb|X, z, σ2
qppσ2

qdbdσ2 (A6)

Equation (A6) can be integrated analytically by plugging in the priors (Equation

(A3)) and the likelihood (Equation (A2)) (see Hoff (2009) for details). With the

posterior odds computed (Equation (A5)), each zj can be evaluated using a Bernoulli

distribution (Equation (A7)). Then for a given z, by combining the likelihood (Equa-

tion (A2)) and the semi-conjugate priors (Equation (A3)), the posteriors of βz and

σ2 can be obtained as follows:

Prpzj “ 1|y,X, z„jq “ Bernoullipoj{poj ` 1qq

ppβz|y,Xz, σ
2
q9ppy|Xz,βz, σ

2
q ˆ ppβzq9multivariate normalpµn,Σnq (A7)

ppσ2
|y,Xzq9ppy|Xz, σ

2
q ˆ ppσ2

q9inverse-gammapνn,Γnq

where z„j represents all the entries in z except for zj; µn “ g{pg`1qpXT
zXzq

´1XT
z y;

Σn “ g{pg ` 1qσ2pXT
zXzq

´1; νn “ pν0 ` nq{2; Γn “ pν0σ
2
0z ` SSRgzq{2; σ2

0z “

py ´Xzβzq
Tpy ´Xzβzq{pn´ pzq; SSRgz “ y

TpI ´ g{pg ` 1qXzpX
T
zXzq

´1XT
z qy.
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Appendix B

Supporting information for chapter 3

B.1 Details on data processing

Soil and plant properties. The global distribution of plant functional type (PFT)

was obtained from MODIS (MCD12C1) (NASA LP DACC, 2013) with a spatial

resolution of 0.05˝ ˆ 0.05˝. Multiple regions covered by forests were selected across

the globe, with a variety of climate types (Table B.11). Each biome corresponds to

the areas covered by a given PFT within a selected region. Soil texture compositions

were obtained from the Harmonized World Soils Database (FAO, 2009). Based on

the major soil texture in each biome, the soil hydraulic properties, i.e., saturated

and unsaturated conductivity, soil water potential, pore-size distribution index and

porosity, were calculated using the generalized statistical relations (Saxton et al.,

1986).

Leaf Area Index (LAI) was extracted from the level-4 MODIS global Leaf Area In-

dex and Fraction of Photosynthetically Active Radiation (FPAR) product (MCD15A2)

(NASA LP DACC, 2016), with a spatial and temporal resolution of 1 km ˆ 1 km

and 8-day respectively. In the SPAC model, LAI is a seasonally varying parameter.
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After re-sampling LAI to 0.05˝ ˆ 0.05˝ grids and linearly interpolating to a daily

scale, the intra-annual variation of LAI was represented by the average of pixels

within each biome over the period of 2003 to 2015. Root zone depth for the first

and second layer were taken as 0.3 m and 1.0 m for all the biomes (Rodŕıguez-

Iturbe and Porporato, 2007; Manzoni et al., 2013; Rodell et al., 2004). For each

biome, RAI in the first layer was obtained from the biome-level average reported

in (Manzoni et al., 2013) (Table B.11). Because of lack of data, RAI in the second

layer was taken as 1. Plant properties controlling internal water transfer, including

leaf-specific conductivity (kp,leafq, ψ50, and a, were obtained from a global database

containing hydraulic traits of 866 species (Kattge et al., 2011). These plant hydraulic

traits were classified into categories based on combinations of PFT and climate type

(Kottek et al., 2006). Each biome in this study was then assigned with the mean

value of the category that has the same PFT and climate type. gp,max in Equation

(3.10) was estimated according to gp,max “ kp,leafLAI{pHcρwq (Manzoni et al., 2013),

in which LAI is the long term average LAI; Hc is the 90th percentile canopy height

extracted from a global map (Lefsky, 2010) and averaged across the biome. Large

tree height, i.e., 90th percentile instead of 50th percentile, was used since tall trees

are associated with low plant conductance, and hence are likely to be the main tar-

get during mortality events (McDowell and Allen, 2015). The parameters in the

biochemical model (Equation (3.13)) and their temperature corrections came from

the cross-species study by (Medlyn et al., 2002). Parameters for all species were

grouped by PFTs and the means for each PFT were used to parameterize the model.

The response of leaf gas exchange to water availability (Equation (3.15)) was param-

eterized according to a recent study based on cross-biome meta-analysis (Manzoni

et al., 2011). Due to large range of these parameters, starting from the biome-average

values reported in (Manzoni et al., 2011), λ˚WW and β0 were calibrated to match the

modeled monthly potential evapotranspiration (PET) and ET against the PET and
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ET dataset derived from MODIS (Mu et al., 2011) respectively (Figure B.11), mak-

ing sure that the magnitudes among PFTs and climate types are in the same order as

reported in (Manzoni et al., 2011). λ˚WW was first calibrated with the goal to match

PET. Modeled PET equals the ET under presumptive conditions of s1 “ s2 “ 1 and

λ “ λ˚WW ca{c
˚
a, where ca is equal to the historical ambient CO2 concentration. Then

β0 was calibrated according to annual actual ET, where soil moisture and mWUE

were allowed to vary under actual climate conditions. It should be noted that in

PET calculation, the model was decoupled with ABL and the climate forcings came

from ABL development in the ET calculation, which represents the actual climate

conditions. In this way, the soil-plant system in each biome is physiologically and

hydrologically reasonable in representing the overall properties at a biome scale. The

biome-specific soil and plant properties are listed in Table B.11.

Given the soil and plant properties in each biome, we analyzed the responses of

stomatal conductance and plant water potential during dry down processes. Starting

from a soil moisture at field capacity, the soil was allowed to consecutively dry down

with zero precipitation. As shown in Figure B.12, ENF biomes generally operate

with wider safety margins than DBF and EBF biomes. Most ENF biomes adopt an

isohydric leaning strategy under stress, i.e. they decrease gs while keeping a relatively

wide safety margin even when gs gets close to zero. In contrast, most DBF biomes

adopt an anisohydric leaning strategy under stress, i.e., they tend to decrease water

potential while keeping stomata open even when the safety margin drops near zero

or negative. The response of EBF biomes could be either one or a hybrid of these

two strategies. The exact response of each biome depends on their hydraulic traits.

The typically wider safety margin and isohydric strategies for ENF compared to the

other two PFTs are consistent with observations (Choat et al., 2012; McDowell et al.,

2008), which indicates representativeness of the plant parameterizations and enables

inter-comparison among PFTs.
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Table B.11: Location, soil texture, climate conditions and vegetation parameters for the investigated biomes.

ID Latitude Longitude Major Climate type PFT RAI1 LAI Hc kp,leaf ψ50 a λWW ˚ β0
range range soil texture (m) (kg/m/s/MPa) (MPa) mmol/mol

1 [35, 40] [–123, –118] Loamy sand Mediterranean ENF 11.6 1.2 14.2 3.25 ˆ10´4 –5.62 4.36 1.0 –1.5
2 [32, 37] [–84, –79] Loamy sand Temperate wet ENF 11.0 2.3 11.8 2.14 ˆ10´4 –3.26 8.04 4.5 –0.5
3 [32, 37] [–84, –79] Loamy sand Temperate wet DBF 9.8 2.4 14.0 1.45 ˆ10´4 –2.03 4.8 1.5 –1.5
4 [15, 20] [–92, –87] Silt loam Tropical dry EBF 6.3 5.0 18.0 4.85 ˆ10´4 –2.03 3.35 4.5 –1.5
5 [0, 5] [–57, –52] Loam Tropical wet EBF 7.4 4.9 22.1 3.09 ˆ10´4 –1.05 1.55 5.5 –1.0
6 [37, 40] [15, 22] Loam Mediterranean ENF 11.6 2.2 6.8 3.25 ˆ10´4 –5.62 4.36 4.0 –1.0
7 [37, 40] [15, 22] Loam Mediterranean DBF 11.6 2.4 11.3 1.40 ˆ10´4 –2.49 2.75 3.2 –1.2
8 [–5, 0] [22, 27] Sandy clay loam Tropical wet EBF 7.4 4.9 16.1 3.09 ˆ10´4 –1.05 1.55 5.0 –1.5
9 [20, 25] [80, 85] Silt loam Tropical dry DBF 9.8 1.5 9.0 5.85 ˆ10´4 –2.23 1.88 2.5 –1.3
10 [30, 35] [107, 112] Loam Temperate winter dry DBF 9.8 1.8 16.5 4.91 ˆ10´4 –1.12 2.47 2.5 –1.5
11 [23, 28] [114, 119] Loam Temperate wet EBF 9.8 2.5 16.4 4.00 ˆ10´4 –1.65 2.63 3.0 –1.2
12 [0, 5] [112, 117] Loam Tropical wet EBF 7.4 4.4 15.6 3.09 ˆ10´4 –1.05 1.55 5.0 –1.0
13 [–35, –30] [149, 154] Silt loam Temperate wet EBF 9.8 1.9 16.9 4.00 ˆ10´4 –1.65 2.63 2.5 –1.5
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Historical climate forcing. Historical climate forcings for the SPAC model,

including stochastic precipitation, net shortwave radiation, and initial and boundary

conditions of ABL, were obtained from the NCEP/NCAR reanalysis data (2.5˝ˆ2.5˝)

(Kalnay et al., 1996) for 1986 to 2005. The two statistics for stochastic precipitation,

i.e., precipitation frequency (λP ) and mean precipitation depth (αP ) were computed

from the 20-year daily precipitation. To account for precipitation seasonality, λP and

αP were computed for two periods separately, i.e., April to October and November to

March, which correspond to the growing season and non-growing season for biomes

in the northern hemisphere and the opposite for those in the southern hemisphere.

Stochastic precipitation in the two seasons was then generated separately for the two

seasons using the corresponding statistics (Rodŕıguez-Iturbe and Porporato, 2007).

Daily net shortwave radiation, which varies with day of year (DOY), was calculated

as the average over the 20 years. Radiation for days with and without precipitation

were calculated separately to account for cloud coverage on rainy days. Daily net

shortwave radiation was distributed into an hourly diurnal cycle using a sine function

consistent with local sunrise and sunset time, calculated from DOY and local latitude.

Initial conditions of ABL include initial ABL height (h0), potential temperature (θ0)

and specific humidity (q0). h0 was set as 100 m (Stull, 1988). θ0 and q0, which also

vary with DOY, were obtained from the 4-time daily data of 2 m air temperature

and near surface specific humidity, linearly interpolated to the sunrise time of each

day and averaged over the 20 years. Similar to radiation, humidity for days with and

without precipitation were evaluated separately as humidity is generally higher on

rainy days. Boundary conditions of ABL, i.e., the lapse rates of potential temperature

(γθ) and specific humidity γq, which reflect the stability of ABL, were extracted from

the daily pressure level data within the troposphere. Daily mean values and the lapse

rates are mostly linearly correlated (Konings et al., 2010) (Figure B.13). Though

some tropical biomes (biome 4, 5, 8, 12) showed low R2 values, their lapse rates
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had small variation range, as such using these linear relations do not impair their

representativeness as much. The fitted linear relations were used to represent lapse

rates under given temperature and humidity. These representations of climate forcing

enable the model to readily incorporate projected changes in climate conditions.

Climate projections. We calculated projected climate changes for multi-models

of CMIP5 experiments under four RCP scenarios (Table B.12). Under each RCP sce-

nario, changes projected by each model were quantified as the difference (percentage

for MAP and magnitude for others (IPCC, 2013)) of the ensemble means for 2050

– 2069 relative to those for 1986 – 2005. These changes were incorporated in the

historical climates from NCEP/NCAR reanalysis data to generate future climate

forcings for the model. Changes in daily initial conditions of potential temperature

and specific humidity were assumed to be identical to the changes in their annual

means. Future boundary conditions were obtained based on the linear relationships

in Figure B.13. Future precipitation amount in the growing and non-growing sea-

sons were obtained by incorporating changes in MAP and PS. For the two seasons,

precipitation amount was separated into mean precipitation depth (αP ) and precipi-

tation frequency (λP ) by keeping αPλP equal to the future daily mean precipitation,

and the ratio αP {λP to be constant (Viola et al., 2008). As these statistics change

in the projected climate, the occurrence frequency and duration of drought with a

given severity will change accordingly. However, possible changes in the spectrum

characteristics of long-term climate oscillations, such as change in El Niño Southern

Oscillation which is still under debate (Wittenberg, 2009), is not included in the

model.

It is to be noted that the risk was found to be dominated by precipitation amount

with little sensitivity to the separation approach (Figure B.14). Hence, the results

are not affected by using a different combination of αP and λP . Future initial condi-

tions of ABL were obtained by adding changes in annual mean air temperature and
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Figure B.13: (a) Relation between daily mean surface potential temperature (θ)
and the lapse rate of potential temperature in the free atmosphere (γθ); and (b)
relation between daily mean surface specific humidity (q) and the lapse rate of specific
humidity in the free atmosphere (γq) based on daily NCEP data from 1986 to 2005.
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Table B.12: List of CMIP5 model outputs included in this study. The used RCP
scenarios of each model are denoted with “x”.

Model name RCP2.6 RCP4.5 RCP6.0 RCP8.5
CMCC-CESM x
CMCC-CM x x
CMCC-CMS x x
CNRM-CM5 x x x
FGOALS-g2 x x x
FGOALS-s2 x
GFDL-CM3 x x x x
GFDL-ESM2G x x x x
GFDL-ESM2M x x x x
HadGEM2-AO x x x x
HadGEM2-CC x x
HadGEM2-ES x x x x
IPSL-CM5A-LR x x x x
IPSL-CM5A-MR x x x x
IPSL-CM5B-LR x x
MIROC-ESM x x x x
MIROC-ESM-CHEM x x x x
MIROC5 x x x x
MPI-ESM-LR x x x
MPI-ESM-MR x x x
MRI-CGCM3 x x x x
MRI-ESM1 x
inmcm4 x x

specific humidity uniformly throughout the year, assuming intra-annual and diur-

nal variation patterns remain unchanged. Future boundary conditions of ABL were

changed accordingly based on the fitted linear relations with θ and q respectively

(Figure B.13). Figure B.15 shows the historical climates and ranges of multi-model

projections for each biome, including mean annual precipitation amount, precipita-

tion seasonality, mean annual air temperature and mean annual specific humidity.

Identical future atmospheric CO2 concentration under each RCP scenario was used

for all the biomes. The ranges shown in Figure 2c, f correspond to the values from
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2050 to 2069, which were obtained by linear interpolation of the values reported in

(Meinshausen et al., 2011).
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Figure B.14: Responses of mortality risk to individual changes in mean annual
precipitation (MAP) and mean precipitation depth (αP ) for (a) ENF in the western
US and (b) DBF in the southeastern US. Numbers on the contours denote risk
magnitude. Blue and green contours represent risks due to hydraulic failure and
stomatal closure, respectively.

B.2 Model validation

Multiple components of the SPAC model have been previously examined and vali-

dated. For example, the soil water balance under stochastic precipitation was demon-

strated to be able to capture observed probablistic characteristics of soil moisture

dynamics (Rodŕıguez-Iturbe and Porporato, 2007). An ecohydrological model forced

by stochastic precipitation in the previous study (Parolari et al., 2014) was shown to

capture the frequency of canopy loss across a precipitation gradient. The resistance

based plant water transport model has been widely examined and applied (Katul

et al., 2003; Manzoni et al., 2013). The optimization based stomatal function was

shown to be able to predict the observed stomatal response in both ambient and CO2

enriched atmosphere (Katul et al., 2009a,b). The constraint of water availability on
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Figure B.15: Historical and future climate conditions of (a) mean annual precipi-
tation (MAP), precipitation seasonality (PS), (b) annual mean air temperature (T)
and annual mean specific humidity (SH) in the 13 biomes as projected by the CMIP5
models. Ranges of multi-model predictions under each RCP scenario are illustrated
by rectangles.
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Figure B.21: Comparison between modeled mortality risk of evergreen needleleaf
forest and observed mortality area in southern Sierra, CA.

leaf gas exchange was examined in (Manzoni et al., 2011). Feedbacks between vege-

tation and ABL dynamics were compared with observed data in (de Arellano et al.,

2012).

To examine the efficacy of the modeled mortality risk, observed mortality in two

temperate and two tropical forests were compared to modeled mortality risk.

(1) Needleleaf forest in southern Sierra, California, USA

The United States Forest Service Pacific Southwest Region Aerial Detection and

Monitoring Program (ADMP) conducts annual aerial survey over the forested areas

in California (U.S. Forest Service, 2015b). Areas with new mortality since last sur-

vey were delineated as polygons. The surveyed area in southern Sierra (119.28˝ W –

118.20˝ W, 35.41˝ N – 37.57˝ N), which belongs to biome 1 in this study (Figure 3.1,

Table B.11), was considered for comparison as it underwent massive mortality in 2014

and 2015. The aerial survey data from 2006 to 2015 were first converted to raster

data with grid resolution of 3 km and then used to calculate the area that underwent

mortality in a given year. The model was parameterized with local soil properties
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Figure B.22: Modeled annual mortality risk in deciduous broadleaf forest in Bond
Park, NC from 1990 to 2008.

and plant hydraulic traits, as described in Section S2, and forced with climate time

series of the concerned period (Saha et al., 2011). Figure B.21 compares the tempo-

ral variation of modeled mortality risk and the observed area with mortality. The

temporal variation in the area with mortality can be interpreted as the temporal

variation in the probability of mortality of a tree within the selected area. Result

shows that the temporal variation of modeled mortality risk ably captures the varia-

tions in areal cover that underwent mortality. Notably, the modeled risk captures the

increase in mortality area from 2006–2008 to 2009–2011, a non-increase in mortality

area from 2009–2011 to 2012–2013, and a significant increase in mortality area from

2012–2013 to 2014–2015. It is to be noted that reasonable correspondence between

modeled and observed data is captured despite using an average representative soil,

vegetation and climate properties for modeling the mortality risk.

(2) Deciduous forest in Bond Park, North Carolina, USA

A recent study (Hoffmann et al., 2011) reported mortality of deciduous broadleaf

forest in Bond Park, NC. The area belongs to biome 3 in this study (Figure 3.1, Table

B.11). Within the surveyed area, 14% of Acer rubrum had died in 2007 while no
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Figure B.23: Comparison between modeled and measured plant water potential of
Acer rubrum in Bond Park, NC, reported in Hoffmann et al. (2011).

mortality was observed in 2008. We examine if the difference in mortality between

these two years can be captured by the modeled mortality risk. The model was

again parameterized with local soil properties, and plant hydraulic traits specifically

for Acer rubrum from the TRY database (Kattge et al., 2011). Using the daily

historical climate (Saha et al., 2011) for the site, the model evaluates the risk for

each year from 1990 to 2008 (Figure B.22). It can be seen that the risk in 2007 is

abnormally high (18.4%), and is largest between 1990 to 2008. The modeled risk in

2008 is zero, which agrees with the observation that there was no observed mortality

in 2008. Figure B.23 further shows that the model was able to capture the plant

water potential during 2007 and 2008 (Hoffmann et al., 2011). Notably, during the

intense drought period in 2007, plant water potential fell below ψ50 suggesting that

the observed mortality would likely have been induced by hydraulic failure, which

is consistent with the conclusion in (Hoffmann et al., 2011). These results highlight

the effectiveness of model in capturing both the temporal variations in mortality risk

and its mechanistic control.

(3) Evergreen broadleaf forest on Barro Colorado Island, Panama
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Figure B.24: Comparison between modeled mortality risk and observed mortality
rate (Condit et al., 1995) in tropical evergreen forest at BCI, Panama.

Mortality rates in tropical forest of Barro Colorado Island (BCI) were measured

for two census periods viz. 1982–1985 and 1985–1990 in a previous study (Condit

et al., 1995). Based on survey of 205 species, the average forest–wide mortality rate

was observed to be 3% yr´1 and 2% yr´1 during the two census periods, respectively.

The higher mortality rate during the first period was attributed to low precipitation

and high temperature (Condit et al., 1995) during the unusually severe dry season

of 1983. To examine if the modeled mortality risk in this study is able to distinguish

observed mortality during these two periods, the SPAC model was parameterized

with local soil properties and average plant hydraulic traits for species found on BCI

from the TRY database (Kattge et al., 2011). Forced with deterministic climate

conditions (Saha et al., 2011), the model shows a higher mortality risk of 2.2%

during the first period, compared to 1.7% during the second period (Figure B.24).

The higher risk during 1982–1985 is primarily due to the notably high risk in 1983

(Figure B.24), which is consistent with the finding in the previous study (Condit

et al., 1995).
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Figure B.25: Comparison between modeled mortality risk and observed mortality
rate (Potts, 2003) in tropical evergreen forest in Malaysia.

(4) Evergreen broadleaf forest in Lambir Hills National Park, Malaysia

The tropical evergreen forest in Lambir Hills National Park, Malaysia, experi-

enced a severe drought in 1998, which resulted in the observed forest–wide mortality

rate to increase to 7.63% yr´1 from a mere 2.40% yr´1 (Potts, 2003) during pre-

drought (1993–1997) years. This area belongs to biome 12 in this study (Figure 3.1,

Table B.11). Annual mortality risk during 1993–1998 was estimated using the SPAC

model to examine its ability to capture the response to drought. Soil properties pro-

vided in (Potts, 2003) were used to parameterize the model. As complete set of plant

hydraulic traits of only two species from the region are included in the TRY database

(Kattge et al., 2011), the average plant properties over all the evergreen species in

tropical wet climate were used for simulation. In agreement with the observation,

the model shows higher mortality risk of 3.3% in 1998, compared to the pre-drought

average risk of 1.1% (Figure B.25).

The aforementioned comparisons between modeled mortality risk and observed

mortality in the field indicate the effectiveness of the model in capturing the temporal
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variation of mortality in response to climate for different PFTs under a range of

climate settings.

B.3 Sensitivity analyses

Sensitivity to plant hydraulic traits. Given that plant hydraulic traits may vary

significantly within each biome (Manzoni et al., 2013; Xu et al., 2016) (Figure B.31),

sensitivity analyses of risks to magnitude of plant hydraulic traits are performed

to test the robustness of the main conclusions of this study. In this regard, the

historical mortality risks and relative change in them in response to projected climate

was evaluated for 25%, 50% and 75% quantiles of the plant hydraulic traits for

each biome. Table B.31 shows the estimated historical risk, the relative changes

in risk under projected changes of precipitation and temperature only, and then

with additional consideration of changes in specific humidity and CO2 concentration.

Higher leaf specific conductance (kp,leaf ) promotes water loss, hence increasing the

magnitude of historical risk. Variations in the absolute value of ψ50 and a also alter

the historical risk by influencing the shape of vulnerability curve (Equation (3.10)).

Notably, for all considered magnitudes of the three hydraulic traits, relative change

in risk significantly reduces when the effects of projected changes in specific humidity

and CO2 concentration are considered (Table B.31).

Sensitivity to tree sizes. In addition to the plant hydraulic traits, sensitivity

analysis was also performed for variations in tree height, diameter at breast height

(DBH) and stand density. These variables influence the plant conductance according

to gp,max “ ksapSAI{pHcρwq, where ksap is the sap wood conductivity; SAI is the

sapwood area index; Hc is the canopy height; and ρw is the water density. Higher

canopy height reduces the plant conductance, whereas larger DBH and higher stand

density increase the plant conductance via larger SAI. Table B.32 lists the sensitivity

of risks to plant conductance. 20% increase in plant conductance can result from
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Figure B.31: Range of plant hydraulic traits for each biome. The range is obtained
by mapping hydraulic traits of all species that belong to the same PFT and climate
type as the given biome, using the TRY database (Kattge et al., 2011). The hori-
zontal line in each box denotes the median, and the upper and lower boundaries of
each box denote the 25% and 75% quantiles respectively.

20% decrease in canopy height or 20% increase in SAI due to either larger DBH or

higher wood density. For all the biomes, on an average, 20% increase in the plant

conductance raises the historical risk from 2.4% to 3.8%, suggesting that trees with

larger DBH and higher wood density have higher mortality risk, all else being equal.

This trend is consistent with previous studies suggesting tight correspondence of

observed mortality with large DBH (Rowland et al., 2015) and high wood density

(Bottero et al., 2017). Though the magnitude of risk could differ due to variations in

tree sizes and wood density within each biome, the increasing extent of mortality risk
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Table B.31: Sensitivity of historical risk and relative changes (difference between
historical and future risk divided by historical risk) under projected climate to plant
hydraulic traits. “HR” denotes historical risk; “P+T” denotes relative change of
risk under projected changes in precipitation and temperature; “All” denotes rela-
tive change of risk under projected changes in precipitation, temperature, specific
humidity and CO2 concentration. Values are the average over all the biomes (%).
Biomes with historical risk less than 0.01% were excluded from calculating the aver-
age relative change.

25% 50% 75%
Parameter HR P+T All HR P+T All HR P+T All
kp,leaf 1.2 224.4 31.0 2.4 158.8 21.0 4.6 86.0 -1.9
ψ50 7.0 115.9 12.2 2.4 158.8 21.0 3.2 111.9 25.3
a 3.5 123.2 11.0 2.4 158.8 21.0 2.3 173.8 28.3

under projected climate is still found to be robustly alleviated by increasing specific

humidity and CO2 concentration (Table B.32).

Table B.32: Sensitivity of historical risk and the alleviating effect of specific humidity
and CO2 concentration to maximum plant conductance (%). Refer to Table B.31 for
abbreviations.

-20% 0% +20%
Parameter HR P+T All HR P+T All HR P+T All
gp,max 1.8 189.0 64.3 2.4 158.8 21.0 3.8 96.1 29.3

Sensitivity to model structure uncertainties. Although multiple compo-

nents of the SPAC model have been previously examined and validated, given that a

model is just an approximate representation of the complex reality, latent structural

uncertainties (apart from parameter uncertainties) still exist. For example, the model

in this study adopts a big-leaf representation, which could result in different canopy

water and carbon flux compared with a two-big-leaf model or a multilayer model that

explicitly considers shading effects on flux exchanges (Dai et al., 2004b; Teske and

Thistle, 2004). Notably, computing gas exchange using a multilayer model at canopy

scale still remains challenging because of the difficulty associated with accurately re-

solving the within canopy turbulence (Katul et al., 1998; Juang et al., 2008), which
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generally requires large eddy simulation. Accurate estimation of the influence of leaf

texture, size and inclination angle (Teske and Thistle, 2004) on incident direct and

diffused radiation is challenging as well. To evaluate how sensitive the main results

in this study are to the structural uncertainty inherent in the model, the modeled

mortality risks for all the biomes under both historical and future climate scenarios

were re-evaluated for ˘20% uncertainty in the stomatal conductance. As stomatal

conductance is influenced by leaf temperature, photosynthetically active radiation

(PAR) at each leaf, humidity, air temperature, mesophyll conductance and turbu-

lent flow right outside the stomata, ˘20% uncertainty could be due to any of these

controls. Table B.33 indicates that although lower stomatal conductance would lead

to a lower mortality risk, it is still significantly intensified by changes in precipitation

and warming temperature. Also, this increase in risk can again be largely alleviated

by rising specific humidity and CO2 concentration.

Table B.33: Sensitivity of historical risk and the alleviating effect of specific humidity
and CO2 concentration to uncertainties in stomatal conductance, on the average of all
investigated biomes. -20% denotes the case where the ’actual’ canopy level stomatal
conductance should be 20% lower than the model estimates, and vice versa. Values
are in %. Refer to Table B.31 for abbreviations.

-20% 0% +20%
HR P+T All HR P+T All HR P+T All
0.5 283.1 44.9 2.4 158.8 21.0 7.7 84.2 14.6

Therefore, although the exact magnitude of risk is difficult to estimate accurately

due to uncertainties in parameters and model structure, the sensitivity analyses

suggest that trend of response of mortality risk to projected climate are still robust.

B.4 Analyses based on alternative quantifications of risk

Considering that stress thresholds leading to actual mortality vary among sites and

species, here we consider the following alternative metrics that employ different
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thresholds of stress intensity and/or duration to evaluate the proneness to mortality.

(1) Mortality risk is quantified as the probability of occurrence of either hydraulic

failure (ψx,min ă ψ50) or full stomatal closure. This is the risk analyzed in the main

text. (2) Cavitation risk is the probability of ψx,min ă ψ12. ψ12 is the plant water

potential at 12% loss of conductivity when conduit cavitation starts to occur and

may not be easy to be fully repaired (Sala et al., 2010; Delzon and Cochard, 2014).

(3) Hydraulic failure risk is the probability of ψx,min ă ψ50. (4) Long-duration cavi-

tation risk is the probability of ψx,min ă ψ12 existing for more than two weeks. The

time threshold of two weeks was selected based on the distribution of duration for

ψx,min ă ψ12 (Figure B.41), indicating that most duration are within two weeks. (5)

Cavitation risk considering intensity is quantified as
şT

0
minpψx,min´ψ12, 0qdt{T {ψ12,

i.e., the integrated difference between ψx,min and ψ12 (only when ψx,min ă ψ12) over

time normalized by total time length and ψ12. (6) Stomatal closure risk is the

probability of full stomatal closure. (7) Long-duration stomatal closure risk is the

probability of full stomatal closure that lasts for more than two weeks.

Figure B.42 illustrates the combined impacts of climate change on the alternative

risks for the thirteen biomes, indicating a robust alleviating effect by increasing spe-

cific humidity and CO2 concentration. Note that EBF biomes in tropical wet climate

(biome 5, 8 and 12) show ψx,min ă ψ12 almost all the time (Figure B.42a) owing to

their high ψ12, which can be seen from the high ψ50 of EBF in tropical climates,

as listed in Table B.11. Table B.41 summarizes the cross-biome averaged response

of each risk. Results based on different risk quantifications confirm a profound in-

tensifying effect of changes in precipitation and temperature, which however can be

significantly alleviated by rising humidity and CO2 concentration. It is also found

that combined change in climate variables tends to increase the risks associated with

stomatal closure relative to that associated with low water potential. Agreement in
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results based on alternative quantifications of risk indicate remarkable robustness of

the findings in the main text.
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Table B.41: Changes in risk using alternative quantifications, under the influence of changes in precipitation pattern and
air temperature (P+T), additional changes in specific humidity (SH), additional changes in atmospheric carbon dioxide
concentration (CO2) and combined changes in all the considered climate variables (P+T+SH+CO2) based on RCP4.5.
Changes are quantified as the difference between historical and future risk divided by historical risk, and averaged across
all the biomes with historical risks higher than 0.01%.

Risk type P+T SH CO2 P+T+SH+CO2

Mortality risk 158.8 % –46.6% –91.2% 21.0%
Cavitation risk 174.2% -98.8% –87.1% –11.7%
Hydraulic failure risk 163.4% –27.9% –144.1% –8.6%
Long-duration cavitation risk 43.6% –9.9% –33.6% 0.1%
Cavitation risk considering intensity 54.6% –8.3% –47.6% –1.3%
Stomatal closure risk 445.7% –139.9% –222.1% 83.7%
Long-duration stomatal closure risk 794.0% –313.4% –390.0% 90.6%134



Figure B.41: Probability density of the duration of (a) ψx,min ă ψ12 and (b) full
stomatal closure. Bin width in the bar plots is one week.
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Figure B.42: Combined climate impacts of changes in climate on the (a) cavitation
risk, (b) hydraulic failure risk, (c) long-duration cavitation risk, (d) cavitation risk
considering intensity, (e) stomatal closure risk and (f) long-duration stomatal closure
risk in the 13 biomes. Gray dashed lines show the risks under historical climate.
Upper and lower boundaries of the boxes correspond to the 25th and 75th quantiles
of the risk based on multi-model projections in each RCP scenario.
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Appendix C

Supporting information for chapter 4

C.1 Bayesian dynamic linear model derivation

Model setup. The dynamic linear model (DLM) is adapted from (Prado and West,

2010; West and Harrison, 1997). Explanation of the notations are listed in Table

C.11.

yt “ F
T
t θt ` vt (C.1)

θt “ Gθt´1 `wt (C.2)

The model contains three modules, i.e., local mean and trend, seasonality and re-

gression, which are denoted with subscripts of l,s and r respectively in the following

discussions.

The local mean and trend module describes the local mean and change between

two time steps. The dimension of this module is pl “ 2. The corresponding regression

vector (Fl) and state evolution matrix (Gl) are

Fl “

„

1
0



, Gl “

„

1 1
0 1


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Hence Equation (C.1) and (C.2) for this module can be written as

yl,t “ θl1,t ` vl,t

θl,t “

„

θl1,t
θl2,t



“

„

1 1
0 1

 „

θl1,t´1

θl2,t´1



`wl,t “

„

θl1,t´1 ` θl2,t´1

θl2,t´1



`wl,t

where θl1,t and θl2,t represent the mean and trend at time t respectively.

A Fourier form representation of seasonality (West and Harrison, 1997) is used

here, with a single harmonic component represented by

Fs1 “

„

1
0



, Gs1 “

„

cosω1 sinω1

´ sinω1 cosω1



where ω1 is the frequency. This representation is equivalent to a Fourier component,

as the expectation of the seasonal component at time t ` k given all the historical

data till time t is

Erys,t`k|ys,1, . . . , ys,ts “ F T
s1 θs,t`k “ F

T
s1G

k
s1 θs,t

“
“

1 0
‰

„

cosω1k sinω1k
´ sinω1k cosω1k

 „

θs1,t
θs2,t



“ At cospω1k ` φtq

where At and φt are the amplitude and phase of the harmonic component that are

functions of θs,t. When using q harmonic components to describe seasonality, the

dimension of this module is ps “ 2q. Combining all harmonic components together,

Fs “

»

—

–

Fs1
...
Fsq

fi

ffi

fl

, Gs “

»

—

–

Gs1 . . . 0
...

. . .
...

0 . . . Gsq

fi

ffi

fl

where Fsj “ Fs1 and Gsj is the evolution matrix with a frequency of ωj, for (j “

1, . . . , q). In this study, one or two harmonic components with periods of one year

and half year were used. The seasonality representation that gives the maximum

model likelihood was selected for each pixel.
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The regression module incorporates the influence of independent variables (x1, . . . , xpr)

on yt using

Fr,t “ rx1,t, . . . , xpr,ts, Gr “ Ipr

The corresponding θr,t contains the coefficients representing the influence of each in-

dependent variable on the observable at time t. In this study, independent variables

include the observation at the previous time step, i.e, yt´1, and one of the following

candidate climate conditions from Daymet V3 (Thornton et al., 2014): air temper-

ature, net shortwave radiation, vapor pressure deficit and available water amount.

The available water amount is calculated as rainfall plus snow melt as part of the

study area are located in a snow setting. These climate conditions were aggregated

to 16-day average between two observations of NDVI. The anomaly for each variable

was obtained by subtracting the long-term average within that 16-day interval, thus

removing seasonality in climate variables. Then the anomaly for each variable was

rescaled by dividing its standard deviation for computational efficiency and stability

of the covariance matrices. The rescaled climate anomaly and lag-1 NDVI observa-

tion were included as independent variables in Fr,t. Only one climate variable was

used to keep the model dimension and computation load low. Models using each

one of the climate variables were implemented and the one with the highest model

likelihood was chosen for further analyses. The item in θr,t corresponding to yt´1 is

the autocorrelation used to identify EWS.

Combining these three modules together, the full DLM has a dimension of p “

pl ` ps ` pr and

Ft “

»

–

Fl
Fs
Fr,t

fi

fl , G “

»

–

Gl 0 0
0 Gs 0
0 0 Gr

fi

fl , θt “

»

–

θl,t
θs,t
θr,t

fi

fl

Forward filtering. First assume that the variance of noise ν and Wt are known.

At time t ´ 1, given all the observed data Dt´1 “ ty1, . . . , yt´1u, θt is assumed to
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follow a multivariate normal distribution, i.e.,

θt´1|Dt´1 „ Npmt´1,Ct´1q (C.3)

Plugging in Equation (C.2), the prior distribution of θt is

θt|Dt´1 „ Npat,Rtq (C.4)

where at “ Gmt´1, Rt “ GCt´1G
T ` Wt. Plugging in Equation (C.1), the

predictive distribution at time t is

yt|Dt´1 „ Npft, qtq (C.5)

where ft “ F
T
t at, qt “ F

T
t Rt Ft ` ν. Coming to time t, the posterior estimation of

θt given all the observation till t is given by the Bayes rule:

ppθt|Dtq “ ppθt|yt, Dt´1q9ppθt|Dt´1q ppyt|θt, Dt´1q “ Npmt,Ctq (C.6)

where mt “ at `At et, et “ yt ´ ft, At “ Rt Ft{qt, Ct “ Rt ´ qtAtA
T
t . When yt is

missing such as on cloudy or snow affected days in this case, the prior from historical

data ppθt|Dt´1q (Equation (C.4)) is used for the estimation of θt (Prado and West,

2010).

However, ppθt|Dtq is not completely solved yet as the variance of noise, ν and Wt,

are unknown in this study. Hence the following revision is incorporated for variance

learning.

Without loss of generality, let vt „ Np0, νq and wt „ Np0, νW ˚
t q, where ν

and W ˚
t are unknown. W ˚

t is a rescaled Wt. Conditional on ν, the derivations of

Equation (C.3)–(C.6) remain the same except the covariance matrices are rescaled,

θt1 |Dt´1, ν „ Npmt´1, νC
˚
t´1q (C.7)

θt|Dt´1, ν „ Npat, νR
˚
t q (C.8)

yt|Dt´1, ν „ Npft, ν q
˚
t q (C.9)

θt|Dt, ν „ Npmt, νC
˚
t q (C.10)
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Assuming the variation of observational error follows an inverse-gamma (IG) distri-

bution,

ν|Dt´1 „ IGpnt´1{2, dt´1{2q (C.11)

ν|Dt „ IGpnt{2, dt{2q (C.12)

where nt “ nt´1` 1 is the degree of freedom and dt “ dt´1` e
2
t {q

˚
t . After integrating

(7)–(12) and marginalizing out ν, the distributions unconditional on ν become t

distributions.

θt1 |Dt´1 „ T pmt´1,C
˚˚
t´1q (C.13)

θt|Dt´1 „ T pat,R
˚˚
t q (C.14)

yt|Dt´1 „ T pft, q
˚˚
t q (C.15)

θt|Dt „ T pmt,C
˚˚
t q (C.16)

where C˚˚
t´1 “ st´1C

˚
t´1, R˚˚t “ st´1R

˚
t , q

˚˚
t “ st´1 q

˚
t and C˚˚

t “ stC
˚
t , with

st´1 “ dt´1{nt and st “ dt{nt.

Wt is obtained using the method of discounting (Prado and West, 2010). Recall

the prior variance of the state vector θt (Equation (C.4)) is Varpθt|Dt´1q “ Rt “

GCt´1G
T`Wt “ Pt`Wt, where Pt is the variance without stochastic noise in state

evolution, i.e., when Wt “ 0. When Wt ‰ 0, it can be assumed that Rt “ Pt{δ

with the parameter δ P p0, 1s. That is, due to stochastic noise, the variance of

the state vector at t ´ 1 gets inflated by 1{δ ´ 1 for the next time step. This is

equivalent to increasing the variance of each entry of the state vector independently

by 1{δ ´ 1, or discounting the degree of freedom from nt to δ nt (Prado and West,

2010). Smaller δ results in more rapid change whereas larger δ represents slower

change in θt. In this study, an identical δ “ 0.98 was used for all the three modules

(Prado and West, 2010; West and Harrison, 1997), which ensures that the model

allows the same extent of freedom for local mean and trend, seasonality and regression
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coefficients to vary through time. Under this condition, the extent of change for each

module can be estimated based on the likelihood of observations following the forward

filtering procedure. At time 0, non-informative priors of m0 “ 0, C˚
0 “ I, n0 “ p,

d0 “ 0.22 n0 were provided, allowing a wide range of variation for θt in the beginning

and let the variance gradually converge as more data points are included (Figure

4.1b). Then the posterior distribution of the state-vector at each time point given

historical observations can be obtained from Equation (C.16).

Table C.11: Names and dimensions of notations in DLM.

Symbol Dimension Name
yt scalar observation
θt pˆ 1 state vector
Ft pˆ 1 regression vector
vt scalar observation noise
ν scalar observation noise variance
G pˆ p state evolution matrix
wt pˆ 1 state evolution noise
Wt pˆ p state evolution noise covariance matrix

C.2 Synthetic experiments of DLM and comparison with alternative
EWS metrics

This section examines the efficacy of EWS derived from DLM in detecting the change

in system resilience and compares EWS with alternative metrics used in previous

studies. Empirical metrics used as EWS in previous studies (Scheffer et al., 2009;

Dakos et al., 2012, 2015), such as autocorrelation and variance that are obtained

using a moving-window approach, were also computed for comparison. Note that

only autocorrelation was tracked using the DLM. Variance was not tracked, as in

an autoregressive model such as the DLM, variance is intrinsically dependent on

autocorrelation, and its temporal variation can be contaminated by non-stationary

stochastic perturbation. This can be demonstrated based on the following simplified
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first-order autoregressive process (AR(1)) with a zero mean,

yt`1 “ αt yt ` σt

where yt is the deviation from the equilibrium state at time t; αt is the lag-1 auto-

correlation at time t; and σt „ Np0, ε2
t q is the noise due to stochastic perturbations.

Both αt and σt are considered as independent from yt. The variance is

Varpyt`1q “ α2
t Varpytq ` ε

2
t

When the time interval between observations is sufficiently small, Varpyt`1q « Varpytq,

hence

Varpytq “
ε2
t

1´ α2
t

Under the assumption that the stochastic perturbation is stationary, i.e., ε2
t “ ε2,

variance would increase as the autocorrelation increases. Such dependence makes it

redundant to consider variance as an extra metric. In addition, under non-stationary

stochastic perturbation, changes of stochastic perturbation could mask out the influ-

ence of autocorrelation. This could be the case for NDVI time series especially during

drought, when forests may be exposed to chronic unfavorable climate conditions with

little variation, or largely varying stress due to extreme heat wave events. For these

reasons, this study focuses on DLM inferred autocorrelation which allows evalua-

tion of resilience under both stationary and non-stationary stochastic perturbations,

rather than variance.

Another metric describing resilience can be obtained from the drift term of one-

dimensional Langevin equation (Racca and Porporato, 2005), which is represented

by

dx

dt
“ Apxq `

a

Bpxqξptq (C.17)
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where Apxq and Bpxq are the drift term and diffusion term respectively; ξptq is zero-

mean white Gaussian noise or Langevin force. The slope of Apxq versus x around

the stable point represents the ease with which the system may recover back to the

stable point after perturbation. Larger (less negative) slope indicates slower recovery

hence lower resilience. This metric, together with the non-parametric autocorrelation

and variance, was also computed using a moving window and compared with the

autocorrelation derived from DLM.

To evaluate the efficacy of DLM and compare the model inferred autocorrelation

with the other metrics, six synthetic experiments on a simple dynamical system

(Equation (C.18)) from (Scheffer et al., 2009) were implemented.

fpxq “
dx

dt
“ γ px´ aq px´ bq ` εt (C.18)

This system has one stable fixed point x1 “ a and one unstable fixed point x2 “ b

(γ ą 0, b ą a). It can be derived that near the stable fixed point, the recovery rate is

λ “ df{dx “ ´γ pb´ aq, and the lag-1 autocorrelation is eλ∆t if the noise εt is i.i.d.

and independent of x. With fixed γ and a, smaller b leads to slower (less negative)

recovery rate, i.e., lower resilience, and raises the autocorrelation around the stable

fixed point. By changing the parameters and noise configuration, the performance

the aforementioned metrics in detecting change in autocorrelation under different

scenarios was examined.

Experiment 1. A time series, with resilience and white noise parameters as

specified in Figure C.21a, was generated using Equation (C.18). Near the stable

fixed point of 0.5, the parameters specify an autocorrelation of 0.50 before time step

600, which was raised to 0.74 afterwards. The magnitude of actual autocorrelation

computed from the time series after adding white noise is expected to be lower than

the specified values. This time series was fed to DLM to test its ability in capturing

the change in autocorrelation. It can be clearly seen that after time step 600, the
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estimated autocorrelation increased to a new level, close to but slightly lower than

the specified value of 0.74 (Figure C.21b). Although some intermittency exists due

to noisy fluctuations, high autocorrelation was identified for the majority of time

after time step 600. Empirical autocorrelation and the drift slope follow the same

pattern (Figure C.21c), with high values identified after time step 600. Standard

deviation also increased slightly from an average of 0.05 to 0.06, though fluctuating

around its 80th percentile due to noise.

Experiment 2. Figure C.22 illustrates an experiment similar to experiment 1

except that εt includes both known forcing (randomly generated using a Gaussian

distribution) and unknown white noise. The known forcing was incorporated into

the regression module of the DLM. With this consideration of forcing, DLM robustly

identifies increased autocorrelation after time step 600 (Figure C.22b). Empirical

autocorrelation and the drift slope generally exhibit a similar pattern (Figure C.22c),

which, however, are more sensitive to fluctuation in data partly due to the inability

to discriminate the influence of forcing.

Experiment 3. In this experiment also, εt includes both known forcing and

unknown white noise. Unlike experiment 2 where the autocorrelation was increased

by reducing system resilience, the time series here was generated with fixed resilience

parameters, but the autocorrelation in forcing increased after time step 600. It can

be seen that DLM effectively shows little change in autocorrelation over time, except

for a few intermittent periods exceeding the threshold (Figure C.23b). The empirical

metrics, however, again exhibit high yet fluctuating values after time step 600 (Figure

C.23c), which is a false signal for system resilience as the increased empirical autocor-

relation and drift slope are not results of reduced resilience but more auto-correlated

forcing. Comparison of results from experiments 2 and 3 demonstrate the ability of

DLM to clearly distinguish reduced resilience from changes in autocorrelation due to

auto-correlated forcing (Figure C.22b, C.23b).
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Figure C.21: (a) Time series generated using Equation (C.18) with γ “ 0.2,

a “ 0.5, b “ 4 pt ă 600q, b “ 2 pt ě 600q, εt
i.i.d.
„ Np0, 0.052q. (b) Mean (blue

line) and uncertainty range (grey area) of the autocorrelation in (a) identified using
DLM. Abnormally high autocorrelation with mean exceeding the longterm mean of
the upper boundary of the uncertainty range are identified as EWS (red triangles).
(c) Empirical metrics including empirical lag-1 autocorrelation (blue line), standard
deviation (green line) and the drift slope (dApxq{dx`1 from Equation (C.17). Eval-
uation was performed using a moving window with a width of 50 time steps. 1 was
added to the drift slope to obtain a magnitude comparable to autocorrelation, to
facilitate visual comparison. All aforementioned metrics are expected to be large
under low resilience. Dashed lines denote the 80th percentile of metrics in the same
color, for identification of abnormally high values.

Experiment 4. In this experiment, apart from known forcing and unknown

white noise, εt also contains unknown seasonal cycles generated using two harmonic

components. The system resilience was again reduced after time step 600, while

forcing and seasonal cycles remained the same. In this case, when the time series

is blended with seasonal cycles, DLM can still identify reduced resilience (Figure

C.24b). The magnitudes of empirical metrics become higher than those in previous
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Figure C.22: (a) Time series generated using Equation (C.18) with γ “ 0.2, a “

0.5, b “ 4 pt ă 600q, b “ 2 pt ě 600q, εt “ εf,t ` εn,t, where εf,t
i.i.d.
„ Np0, 0.072q

denotes forcing and εn,t
i.i.d.
„ Np0, 0.052q denotes noise. For details on (b) and (c),

refer to Figure C.21.

experiments, due to autocorrelation and higher variance embedded in the seasonal

cycles (Figure C.24c). The influence of seasonal cycles and noise make the change in

resilience hard to identify using empirical metrics.

Experiment 5. This experiment examines the influence of a step-wise drop in

the time series on autocorrelation. After time step 600, the magnitude of the stable

state dropped by 0.25 (Figure C.25a) whereas the resilience remained the same. It

can be seen that such change was picked up by the term of local mean in DLM

(Figure C.25b) without raising autocorrelation (Figure C.26c). This result suggests

that a sudden drop in NDVI possibly due to canopy die-back would not induce false

alarm of high autocorrelation if resilience remained unchanged.

149



0 200 400 600 800 1000

0.25

0.50

0.75

1.00

yt

(a)

0 200 400 600 800 1000

0.0

0.5

1.0
DL

M
 a
ut
oc
or
r

(b)
mean EWS 90% range

0 200 400 600 800 1000
Time step

0.0

0.5

1.0

au
to
co
rr/
dr
ift

(c)

autocorr drift

0.05

0.10

0.15

0.20

st
d

std

Figure C.23: (a) Time series generated using Equation (C.18) with γ “ 0.2, a “

0.5, b “ 4, εt “ εf,t ` εn,t, where εn,t
i.i.d.
„ Np0, 0.052q is noise and the forcing

εf,t “ σf,t`αf εf,t´1, in which σf,t
i.i.d.
„ Np0, 0.072q and the autocorrelation of forcing

αf “ 0.2 pt ă 600q, αf “ 0.6 pt ě 600q; σf,t is independent of εf,t´1. For details on
(b) and (c), refer to Figure C.21.

Experiment 6. This experiment examines the influence of a trend in the time

series on autocorrelation. After time step 600, instead of a step-wise change in

Experiment 5, the time series gradually reduced (Figure C.26a), representing to

the case where NDVI exhibits a downward trend during prolonged drought. The

resilience was prescribed as the same. Again the decreasing trend can be identified

by the local mean (Figure C.26b) and the autocorrelation did not increase (Figure

C.26c).

Overall, these theoretical experiments suggest that empirical metrics can reason-

ably capture the change in system resilience under settings with a controlled level of

noise and little influence of forcing and seasonality. When the observed time series is

150



0 200 400 600 800 1000

0.25

0.50

0.75

1.00

yt

(a)

0 200 400 600 800 1000

0.0

0.5

1.0
DL

M
 a
ut
oc
or
r

(b)
mean EWS 90% range

0 200 400 600 800 1000
Time step

0.0

0.5

1.0

au
to
co
rr/
dr
ift

(c)

autocorr drift

0.05

0.10

0.15

0.20

st
d

std

Figure C.24: (a) Time series generated using Equation (C.18) with γ “ 0.2, a “

0.5, b “ 4 pt ă 600q, b “ 3 pt ě 600q, εt “ εf,t` εs,t` εn,t where εf,t
i.i.d.
„ Np0, 0.072q is

forcing εn,t
i.i.d.
„ Np0, 0.052q is noise; and the seasonal cycle εs,t “ 0.05 sin pω1 pt´ 6qq`

0.1 sin pω2 pt´ 4qq, in which ω1 “ 2π{p365.25{16q and ω2 “ 2ω1. For details on (b)
and (c), refer to Figure C.21.

blended with forcing, seasonality and noise, empirical metrics may fail to identify the

change or provide false signals. However, DLM performs more robustly by learning

the influence of forcing, seasonal cycles and noise level from data, and estimating

the autocorrelation conditional on these influences. Notably, such influences are

ubiquitous in time series of vegetation dynamics such as NDVI, thus underscoring

the need for a robust resilience estimation methodology for analyses. In addition, a

step-wise or gradual decrease in the time series would not induce false alarms using

DLM. Figure C.27 illustrates the fraction of area showing abnormally high empiri-

cal autocorrelation, variance and drift slope during 2005–2015, in comparison with

observed mortality. Unlike the clear association between mortality and abnormally
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Figure C.25: (a) Time series generated using Equation (C.18) with γ “ 0.2, a “
0.5 pt ă 600q, a “ 0.5 ´ δ pt ě 600q, b “ 4 pt ă 600q, b “ 4 ´ δ pt ě 600q, where

δ “ 0.25 is the magnitude of a step-wise drop in yt; εt “ εn,t where εn,t
i.i.d.
„ Np0, 0.152q

is the noise; (b) Mean (blue line) and uncertainty range (grey area) of the local mean
in (a) identified using DLM; (c) Mean (blue line) and uncertainty range (grey area)
of the autocorrelation in (a) identified using DLM.

high autocorrelation identified using DLM (Figure 4.2, main text), the interannual

variation of forest mortality was poorly captured by these metrics.

Code for theoretical experiments is available at https://github.com/YanlanLiu/

early-warning-signal-DLM.

C.3 Critical slowing down during EWS period

To examine the connection between EWS, critical slowing-down, and loss of system

resilience, a prototypical deterministic nonlinear dynamical model (Strogatz, 2014)
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Figure C.26: (a) Time series generated using Equation (C.18) with γ “ 0.2, a “
0.5 pt ă 600q, a “ 0.5´ δpt´ 600q pt ě 600q, b “ 4 pt ă 600q, b “ 4´ δpt´ 600q pt ě
600q, where δ “ 0.3{400 is the slope of the decreasing trend in yt; εt “ εn,t where

εn,t
i.i.d.
„ Np0, 0.152q is the noise; For details on (b) and (c), refer to Figure C.25.

as shown below is used.

fpxq “
dx

dt
“ τ

`

r x´ x3
˘

, (C.19)

where r is the control parameter and τ is a time scale parameter. This model

describes self-limiting growth and includes a linear term and a cubical reduction,

instead of a quadratic reduction encountered in logistic models. The increased non-

linearity is presumably due to intensification of competition among individuals due

to climate stress. The corresponding potential V pxq is

V pxq “ ´

ż

fpxq dx “ ´τ

ˆ

r

2
x2
´

1

4
x4

˙

` C0. (C.20)
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Figure C.27: The fraction of area showing abnormally high empirical autocorrela-
tion (a), variance (b) and drift slope (c) during 2005–2015 in comparison to observed
mortality. These empirical metrics were computed using a moving window with a
width of 50 time steps (2.2 years) for each pixel in the entire study area. Abnormally
high values were identified as those exceeding the 80th percentile of the metric during
2000–2015.

154



Without loss of generality, it may be assumed that C0 “ 0. When r ą 0, this system

has two stable-fixed points of x˚ “ ˘
?
r, at which dx{dt “ 0 and V “ Vmin. The

width of each attraction basin, i.e., the range within which the system can recover

without switching to another stable state, is
?
r. As r decreases, the attraction basin

shrinks resulting in loss of resilience. In this prototypical system, bifurcation occurs

at r “ 0, and is associated with the critical slowing down (Figure C.31a). As τ

decreases, the size of attraction basin does not change whereas the potential surface

becomes flatter (Figure C.31b), thus contributing to a higher likelihood of switching

under stochastic perturbations (i.e. loss of resilience). Change in τ and r can be

captured by change in the recovery rate around the stable point, i.e.,

λ “
Bf

Bx

ˇ

ˇ

ˇ

ˇ

x“x˚

“ ´2 τ r (C.21)

which can be measured using the lag-1 autocorrelation of eλ∆t (Scheffer et al., 2009).

Using the NDVI time series in Figure 4.1 (main text), the model (Equation

(C.19)) was fitted to data from two time periods with and without detected EWS

respectively for illustration. As no abrupt shift occurred before the end, the observa-

tions are considered as samples from the attraction basin of one of the stable states.

The state of the system (x) is taken here as the deseasonalized NDVI with its minimal

value anchored to zero, i.e., the separation point between the two attraction basins,

for both normal and EWS periods. Compared to the normal period, r is reduced

from 0.022 to 0.012 during the EWS period (Figure C.32a), a signature of upcom-

ing bifurcation and hence critical slowing down. The τ also decreased from 11.19 to

7.19. The reduction in both r and τ contributed to a flatter potential surface (Figure

C.32b) and decreased recovery rate, i.e., lower resilience, and increased probability

of abrupt transition under stochastic forcings. These findings suggest that critical

slowing down occurred during the time when EWS was identified, supporting the
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connection between empirically derived EWS, abrupt phase transitions, and loss of

resilience.
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Figure C.31: Phase plots and potential surfaces of the dynamic system of Equation
(C.19) under different values of (a) r and (b) τ .
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Figure C.32: (a) Phase plots and (b) potential surfaces of the dynamic system of
Equation (C.19) fitted using NDVI during normal (without EWS, black) and EWS
(red) periods (Figure 4.1, main text). NDVI* is the deseasonalized NDVI minus its
minimal value (see SI Section S3 text). Box plots in (a) illustrate the range of data.
Solid and dashed lines are fitted velocities and potential surfaces, representing the
sampled and unsampled basins of attraction, respectively.
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C.4 Relations between EWS characteristics and mortality probability
across species and eco-climate regions

Relations between mortality area and the two EWS characteristics, i.e., the fraction

of area showing EWS and EWS duration, were examined individually. As shown in

Figure 4.4 in the main text, interannual variation in the probabilities of mortality and

ALN is positively correlated with the fraction of area showing EWS. However, Figure

C.41 here suggests that neither species-specific nor the integrated average of EWS

duration by its own could explain the temporal variation in mortality probability.

This indicates that EWS area is more effective in capturing the interannual variation

of mortality probability than EWS duration.

As illustrated in Figure 4.4 in the main text, such relation between EWS area

and mortality probability clearly differs among species. However, when combining all

the species located within the same eco-climate region according to the classification

from (U.S. Forest Service, 2004), such relation disappears for most ecoregions (Figure

C.42), possibly due to co-existence of multiple species that exhibit distinct relations

between their EWS area and mortality. Two exceptions are the regions of southern

Sierra and the middle north coast where the species composition is relatively uniform,

with 68% and 71% of the area dominated by Pinus respectively. As forests within

each eco-climate region roughly share a similar climate type, these results imply that

the translation from EWS to mortality probability strongly depends on species type

rather than climate region.

C.5 Spatial-temporal model selection

Estimation and prediction accuracies were evaluated using different combinations of

EWS characteristics (Figure C.51). With a zero lead time, EWS area explains 70% of

interannual variation of mortality probability (Figure C.51a). However, this accuracy
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Figure C.41: Relations between EWS duration and interannual variation of mor-
tality probability during 2005–2015. Average EWS duration is computed for all
pixels showing EWS for each species (colored triangles) and the entire study area
(black dots). No significant (p ă 0.05) relation exists for any species.
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Figure C.42: Relations between the fraction of area showing EWS and mortality
probability during 2005–2015 for all the forests in each eco-climate region according
to the classification from (U.S. Forest Service, 2004). Dashed lines denote significant
relations with a significance level of p ă 0.05.
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decreases to 30% when using a 12-month lead time. Adding a quadratic term of EWS

area improves the estimation accuracy to 96% and 41% with lead times of 0 and 12

months respectively. These two accuracies can be further improved to 97% and 74%

respectively by additionally incorporating EWS duration. Such improvement is also

apparent in the prediction scenario (Figure C.51b), thus highlighting the contribution

of EWS duration in the estimation and prediction of mortality, especially at long

lead times. Adding a quadratic term of EWS duration or an interaction term of

EWS duration and area, only marginally improved estimation accuracy. However,

the prediction accuracy for lead times longer than 6 months reduced, implying less

robust information contained in these additional terms.

Considering EWS characteristics with static spatial variables such as elevation

and live basal area that have been shown to influence the spatial pattern of forest

mortality (Tai et al., 2017; Young et al., 2017), the most informative predictors for

the spatial-temporal variation of mortality were examined. The linear, quadratic

and interaction terms of basal area, elevation, EWS area and EWS duration were

considered as candidate predictors. For each species, linear model selection was

performed using data from all the grids at a given spatial scale and all years in 2005–

2015. The Bayesian Information Criterion (BIC) was computed for each possible

combination with up to five predictors. The combination yielding the lowest BIC,

i.e., high model likelihood and small number of parameters, is listed in Table C.51

for each species. EWS characteristics were selected for estimating both mortality

occurrence and intensity for all of the seven dominant species. The results highlight

that in addition to the previously studied influence of topography and community

competition, the resilience signal is also crucial for capturing the spatial pattern of

mortality.
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Figure C.51: Temporal estimation (a) and prediction (b) accuracy of mortality
probability using different combinations of EWS area (area) and mean duration
(dura) detected with lead times ranging from 0 to 12 months.
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Table C.51: Selected predictors for capturing the spatial pattern of mortality occurrence and intensity at a 1/8 degree
scale based on Bayesian Information Criterion (BIC). Candidate predictors include the linear, quadratic and interaction
terms of live basal area (ba), elevation (dem), EWS area (area) and EWS duration (dura).

Genus Mortality occurrence Mortality intensity
Abies ba` dem` dura` dem2 ` duraˆ area ba` dura` ba2 ` demˆ dura` dura2

Juniperus ba` dura` ba2 ` dem2 ` duraˆ area dura` baˆ dura` dem2

Picea dura` area2 ` baˆ dem` dem2 ` duraˆ area ba` dem` dura` dura2

Pinus area` ba` dura` ba2 ` dura2 ba` dura` baˆ dem` baˆ dura` dura2

Pseudotsuga area` dura` baˆ dem` baˆ dura` dura2 dura` baˆ dura` dem2 ` dura2

Lithocarpus ba` dem` dura` baˆ area` baˆ dem ba` dem` dura` baˆ area` dura2

Quercus ba` dura` ba2 ` demˆ area` dura2 ba` dura` duraˆ area` dura2
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C.6 Estimation and prediction accuracies across spatial scales and
lead times

Figure C.61 illustrates the estimation and prediction accuracies at spatial scales

of eco-climate region, 1/2 degree, 1/8 degree and 3 km grid using EWS detected

with lead times of 0, 3, 6, 9 and 12 months. The median of the overall estimation

accuracy (ACC) for mortality occurrence, i.e., the summation of true positive and

true negative divided by the total number of samples, is within 0.89–0.98 for all

spatial scales and lead times (Figure C.61a); whereas the area under the receiver

operating characteristic curve (AUC) for mortality occurrence (Figure C.61c) and R2

for mortality intensity (Figure C.61e) decrease with finer spatial scale. For spatial

scales of eco-climate region, 1/2 degree, and 1/8 degree, the median of estimated AUC

lies between 0.61–0.94 for the range of considered lead times, which however drops to

0.37–0.43 at a spatial scale of 3 km. The median of R2 ranges within 0.66–0.78, 0.57–

0.70, 0.50–0.57 and 0.45–0.49 across different lead times at eco-climate region, 1/2

degree, 1/8 degree and 3 km scales, respectively. For some spatial scales, the spatial

accuracies decrease slightly when using longer lead times, though the difference is

less compared to that among different spatial scales. Prediction accuracies follow

a similar pattern as estimation accuracies, yet have lower magnitudes as expected

(Figure C.61b, d, f).

One possible reason for the reduction in performance at finer spatial scales is

stochastic perturbation in space. Low resilience indicates a higher probability of

mortality occurrence under the condition that the stochastic perturbation is statis-

tically the same. However, strong perturbations at a high-resilience location can

still push the system over the tipping point and result in mortality. An example

of such strong perturbation could be local insect or pathogen attack. Hence spatial

stochastic perturbations impair the accuracy in estimating mortality using the deter-
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ministic resilience-based EWS. The influence of stochastic perturbations is expected

to be larger at a finer spatial scale as it can be averaged out at a coarser scale. In

addition, scale mismatch between aerial survey maps and grids used in the spatial

analysis may also undermine the accuracy, especially at fine resolutions. As some but

not all trees died within the polygons, it is possible that mortality rarely occurred

in fine grids even when overlapping with mortality polygons. On the other hand,

small area that actually underwent mortality may also get omitted in mortality maps

(Forest Health Monitoring Program, 1999). In addition, stand density was also not

considered in the evaluation of mortality probability, which is quantified as the frac-

tion of mortality area rather than the fraction of dead trees, due to lack of such data

with acceptable accuracy and compatible coverage. These caveats could obscure the

relation between low resilience signal and mortality, thus reducing spatial estimation

accuracies. Nonetheless, at larger spatial scales of eco-climate region, 1/2 degree and

1/8 degree, EWS characteristics together with metrics of topography and live basal

area reasonably are shown to be able to partially capture the spatial distribution of

mortality.

C.7 Sensitivity analysis

C.7.1 Thresholds for EWS and abnormally low NDVI identification

The EWS was identified as the presence of an autocorrelation being higher than a

threshold and lasting for at least 3 months. The threshold was taken as the longterm

average of the 80th percentile in the estimated distribution of autocorrelation (Fig-

ure 4.1, main text). Abnormally low NDVI (ALN) was quantified as the presence

of NDVI being lower than a threshold, i.e., the 20th percentile of all the observed

NDVI values in that month. Here instead of 80th/20th percentiles, we use a looser

70th/30th percentiles and a more stringent 90th/10th percentiles threshold and re-

peat the analyses to evaluate the sensitivity of the main results to these thresholds.
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Scale: eco−climate region 1/2 d 1/8 d 3 km
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Figure C.61: Spatial model performance in estimating (a, c, e) and predicting
(b, d, f) mortality at spatial scales of eco-climate region, 1/2 degree, 1/8 degree
and 3 km grids using EWS detected with different lead times. The overall accuracy
(ACC, a, b) and the area under the receiver operating characteristic curve (AUC, c,
d) were computed for mortality occurrence, i.e., whether more than 0.1% of the 30
m pixels in a grid/eco-climate region underwent mortality. R2 (e,f) was computed
for mortality intensity, i.e., the fraction of 30 m pixels within a grid/eco-climate
region that underwent mortality, for all grids/eco-climate regions with mortality
occurrence. Spatial models were fitted for each genus separately. The accuracy in
each year was assessed by combining all the estimation/prediction for different genus
together. Each bar indicates the range of the accuracy across 2005–2015.
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The magnitude of area with EWS and ALN shrinks as the threshold becomes more

stringent, i.e. from 70th/30th percentiles (Figure C.71a) to 90th/10th percentiles

(Figure C.71c). However, even while using these alternative thresholds, EWS area

still captures the interannual variation in the probabilities of ALN (Figure C.71).

As suggested by the exceedance probability of the lead time of EWS (Figure C.72),

lead time reduces as the threshold becomes more stringent. For example, when

using thresholds of 70th, 80th and 90th percentile to identify EWS, the mid-half

of the cases had lead times of 7–23 months, 6–19 months and 6–13 months w.r.t.

mortality occurrence, respectively. The majority of EWS still occurs earlier than

ALN even when using the most stringent threshold, as suggested by the exceedance

probability of a 0 lead time w.r.t. canopy ALN. The relations between EWS area

and probabilities of mortality and ALN robustly exhibit strong genus dependency,

and are significant for most genus when using different thresholds (Figure C.73).

Notably, the significant relations for Pinus (w.r.t. mortality) and Quercus w.r.t.

ALN disappear when using the most stringent thresholds of 90th/10th percentiles.

Temporally, EWS identified using the three thresholds explains more than 92%

of the interannual variation in mortality probability (Table C.71). For take-one-out

prediction, EWS identified using the 70th and 80th percentile predict around 94%

of the variation in mortality probability, whereas EWS identified using the 90th

percentile merely predicts 54% of the variation. Spatially, the median of the overall

estimation accuracy (ACC, Figure C.74a) and AUC (Figure C.74b) for mortality

occurrence are within 0.85–0.98 using different thresholds; the median estimation

R2 is within 0.45–0.60. Although the estimation accuracies (ACC, AUC and R2)

are the lowest when using a threshold of the 80th percentile, the difference between

estimation and prediction accuracies are the least, suggesting a more robust relation

between mortality and the EWS detected using the 80th percentile. AUC and R2 in

a prediction scenario are the lowest when using the 90th percentile.
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The 3-month period is used to diminish the influence of autocorrelation spikes

due to noise in NDVI data. As shown in Fig C.75, with a 1 month threshold, false

alarms arose in 2006 and 2008 (Figure C.75a) due to spikes in autocorrelation. Longer

thresholds of 3 months and 5 months reduce such false positives (Figure C.75b, c).

But a longer duration threshold may lead to more false negatives by missing reduced

resilience in a short term. In addition, a longer duration threshold results in a shorter

lead time as expected. In this case, the lead times using 1 month, 3 months and 5

months thresholds are 35 months, 33 months and 31 months respectively.

These results highlight the robustness of the results in this study with respect to

different thresholds used to identify EWS. It is also suggested that using a highly

stringent threshold to detect EWS might leave out informative low resilience signals

that could have contributed to estimation and prediction of mortality. The sensitivity

analysis conducted here for the forests in California indicates that the 80th and

70th percentiles have better performance than the 90th percentile in capturing the

spatial-temporal variation of mortality. The 3 months threshold was also found to

provide EWS that is able to capture the spatial-temporal variations of mortality

in the study area. These thresholds, however, are expected to be location specific.

Similar sensitivity analyses should be performed when applying this framework to

other forests.

C.7.2 Threshold of mortality occurrence

For spatial estimation and prediction, mortality occurrence is defined by mortality

probability greater than 0.1%. When using a more stringent (0.01%) and a more

relaxed threshold (0.5%) to classify mortality occurrence, the overall estimation ac-

curacy and AUC for mortality occurrence reduces (Figure C.76 a, b), while the

accuracy for mortality intensity showed little change (Figure C.76 c). The reduced

accuracies for mortality occurrence is because a 0.5% threshold missed 45.4% of
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pixels with mortality probability greater than zero (Figure C.77), thus leading to

more false positives; and a 0.01% threshold includes almost all (99.6%) pixels with

mortality, most of which had tiny mortality probability, thus resulting in more false

negatives. In this regard, a moderate threshold of 0.1% was used to classify mor-

tality occurrence, which was found to provide good accuracies for both mortality

occurrence and intensity.

C.7.3 Discounting factor

The discounting factor δ (see methods) controls the magnitude of stochastic variation

in the state vector θt. δ “ 1 corresponds to no stochastic variation. A smaller

δ allows greater stochastic variation, leading to a more fluctuating time series of

autocorrelation and a wider uncertainty range (Figure C.78a). This will influence

the occurrence of EWS and its timing. It is to be expected that a more stable

estimate of autocorrelation using a larger δ would result in less false positives and a

shorter lead time, as the estimated autocorrelation responds to the data more slowly.

However, using the time series in Figure 4.1 (in the main text) as an example, the

lead time of EWS actually increases from 29 to 33 and 40 months with increasing δ

from 0.96 to 0.98 and 0.995 (Figure C.78). In addition, for δ “ 0.995, EWS was also

identified in September 2008, which was not followed by mortality (false positive).

The reason for such counterintuitive result is that under a large δ, even though it

might need more time steps to identify the change in autocorrelation, the narrower

uncertainty range results in a lower threshold for EWS identification, which offsets

the influence of the slow updating rate of autocorrelation. The influence of δ on the

occurrence and timing of EWS gets attenuated by these two counter effects, of which

the relative magnitudes depend on each specific time series. δ “ 0.98 was adopted

in this study as it provides an effective EWS for mortality. Despite the extent of

fluctuation and uncertainty range in autocorrelation estimates, all the three different
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δ values result in similar temporal patterns, suggesting the association between EWS

and mortality still holds.
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Figure C.71: Interannual variation of EWS area (blue lines) in comparison with
observed mortality area (red lines) and abnormally low NDVI (ALN) (brown lines)
identified using thresholds of (a) 70th/30th, (b) 80th/20th and (c) 90th/10th per-
centiles of autocorrelation and NDVI respectively.

Table C.71: Temporal estimation and prediction accuracies of mortality probability
within the entire study area using a quadratic combination of EWS area (area `
area2) detected with a zero lead time and different thresholds.

Percentile 70th 80th 90th
Estimation 0.972 0.948 0.925
Prediction 0.937 0.947 0.541
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Figure C.72: Exceedance probability of EWS lead time w.r.t. mortality and ab-
normally low NDVI (ALN). EWS and ALN are identified using thresholds of (a)
70th/30th, (b) 80th/20th and (c) 90th/10th percentiles. Black solid lines in both
figures represent all the surveyed area; colored dashed lines represent the area dom-
inated by major species within the surveyed area, respectively.

C.8 EWS in snow-free and snow-affected regions

As snow affected data has been removed and treated as missing data, the presence of

snow is not expected to introduce an artifact in autocorrelation pattern across years

via mixed signal contribution to NDVI. To further confirm this using the data in this
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Figure C.73: Species specific relations between the fraction of area showing EWS
and probabilities of mortality and abnormally low NDVI (ALN) during 2005–2015.
EWS and ALN were identified using thresholds of (a) 70th/30th, (b) 80th/20th and
(c) 90th/10th percentiles. Solid trend lines denote significance level of p ă 0.01 and
dashed trend lines denote significance level of p ă 0.05. Trend lines are not plotted
for genus with no significant relations.
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Figure C.74: Spatial estimation and prediction accuracies of mortality at a 1/8
degree scale using EWS characteristics detected with zero lead time and thresholds
of (a) 70th, (b) 80th and (c) 90th percentiles. The overall accuracy (ACC) and AUC
are for mortality occurrence and R2 is for mortality intensity.

study, the temporal trajectories of EWS area for snow affected and snow free settings

are analyzed (Figure C.81) separately. To identify regions that are little affected by

snow but also with adequate samples of mortality (more than 0.5% on average), the

snow free regions are marked as 1/8 degree grids in which more than 99.9% of the

area had maximum SWE less than 1 mm during 2000-2015. The rest of the study

area is considered as snow affected regions. As shown in Figure C.82, EWS area of

both snow free and snow affected regions exhibited similar patterns with observed

mortality area, suggesting that the identified high autocorrelation is not an artifact

due to snow cover.
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Figure C.75: Time-varying autocorrelation estimated using DLM and the detected
EWS using different duration thresholds.
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Figure C.76: Overall estimation accuracies (a) and area under the receiver oper-
ating characteristic curve (AUC) for mortality occurrence (b), and R2 for mortality
intensity (c) at a spatial scale of 1/8 degree. Three thresholds of 0.01%, 0.1% and
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Figure C.78: Time varying autocorrelation estimated by DLM using different dis-
counting factors (δ, see methods).
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Figure C.81: Distribution of snow affected and snow free region based on snow
water equivalent data from Daymet V3.
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Figure C.82: Temporal trajectories of mortality area (red lines), EWS area (blue
lines) and abnormally low NDVI (ALN) area (dark red lines) for snow free (a, b)
and snow affected areas (c, d).
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Lévêque, C., Naiman, R. J., Prieur-Richard, A.-H., Soto, D., Stiassny, M. L., et al.
(2006), “Freshwater biodiversity: importance, threats, status and conservation
challenges,” Biological reviews, 81, 163–182.

Ellsworth, D. S., Reich, P. B., Naumburg, E. S., Koch, G. W., Kubiske, M. E., and
Smith, S. D. (2004), “Photosynthesis, carboxylation and leaf nitrogen responses
of 16 species to elevated pCO2 across four free–air CO2 enrichment experiments
in forest, grassland and desert,” Global Change Biology, 10, 2121–2138.

Fan, Y., Li, H., and Miguez-Macho, G. (2013), “Global patterns of groundwater
table depth,” Science, 339, 940–943.
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