e List of presentations:

e Exhibit Hall Booth 2521

e Town Hall:
When: Tuesday, December 16, 12:30-1:30 PM
Where: Room 2005, Moscone West

e Graduate Research Group social:
When: Wednesday, December 17, 4-7 PM
Where: Bin 55, Marriot Marquis


http://criticalzone.org/national/news/story/czos-at-agu/

e Introduction
- Dr. Enriqueta Barrera (U.S. National Science Foundation)

e CZ0s: network of sites, data and people
- Dr. Susan L. Brantley (Penn State; Shale Hills PI)

e Cross-CZO science questions
- Dr. Bill Dietrich (UC-Berkeley; Eel River PI)

e CZO common measurements
- Dr. Jon Chorover (U Arizona; Sta Catalina/Jemez PI)



Critical Zone Observatory Program

Enriqueta Barrera
ebarrera@nsf.gov

Program Director
Division of Earth Sciences

Webinar - Dec. 8, 2014
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http://criticalzone.org

The Critical Zone Observatory (CZO) program is both individual
sites and a network of sites, promoting a system approach to
Critical Zone Science

The CZO Program is an infrastructure for research of the
CZ Community at large: CZO scientists and NSF
encourage community involvement




Intensively Managed

Eel R:ive:r CZO’ ‘5
__,‘Jﬁ ynglds o

CZ
o La“ds“‘aczo Susquehanna-Shale Hills CZO
: 4 ﬁ *Chr'st'na River Basin CZO
Boulder Creek CZO 1St v

* ';fa
Southern'Sie -_ a
J 1/ Jemez River Basin CZO Calhoun CZO

ey A
.-If : .(.

. Ci alina Mts.

¥ & Luquillo CZO

"'g A ! g g
N G




i

www.criticalzone.org

- b * SWITCH OBSERVATORY ¥ }
AL ZONE OBSERVATORIES
U.S5. NSF NATIONAL PROGRAM About | News | Events | Opportunities | Contact

Research

Infrastructure Data

Olga
Mayol

COLLABORATOR
Luquillo CZO

Atmospheric Aerosols

Models

Publications People Education/Qutreach

We need your enthusiasm & big brains
Undergrads, Grad Students, Collaborators. & others... please contact us.

SEE YOUR OPPORTUNITIES >>

o

o

e o e 0D

Opportunities Quick Links

CZO0s at AGU What Is the "Critical Zone"?

Postdoctoral Opportunity with the Catalina- Our Ten Observatories
Jemez CZO

Future Directions for CZO Science

View Opportunities >
Common CZO Infrastructure and Measurements



Critical Zone Observatory Network

Education

At 10 CZO:
~110 graduate students at present: ~¥42 graduated
~ 70 undergraduate students: ~53 graduated

* EAR Postdoctoral Fellowships (EAR-PF), July 20, 2015
Fellowships awarded for CZO research

* International Scholar program
54 graduate students to 20 European host institutions

* Research Experience for Undergrad/Res. Exp. Teachers (REU/RET)
Christina River Basin & Shale Hills joint REU/RET program



CZO National Office, CZO-NO

* Coordination of CZO Network Research and Educational
Activities

* Outreach to the Critical Zone Community at large and the

public on behalf of the network

Dr. Louis Derry - Cornell University
Dr. Timothy White - Pennsylvania State University

Dr. Robert Ross - Paleontological Research Institute



How to become involved with CZ0Os

Seek a seed grant from one of the CZOs (some have them, some don’t)

Seek funding from NSF programs: EAR SEP programs and others (include
letter of support from the CZ0O)

Ask a CZO PI to host one of your grad students or postdocs to collect data
or pursue modelling

Use CZO data posted on the web (and notify the CZO)
Interact with the National Program office

Join the Graduate Research Group (contact Dr. Nikki West @ PSU:
nikki.west@gmail.com)

Attend a workshop or the all-hands meeting (hosted by SH CZO, Sept.
2016)

Pursue cross site comparisons that leverage the CZOs



A growing international network

« US Critical Zone Observatory program

« European Commission SoilTrEC (Soil Transformations in European
Catchments) http://www.soiltrec.eu/

* French RBV (Réseau des bassins versants— Network of River Basins);
CRITEX (Critical Zone Program of Excellence) equipment project
http://rnbv.ipgp.fr/

« TERENO (Terrestrial Environmental Observatories in Germany)
http://teodoor.icg.kfa-juelich.de/overview-de

« China Critical Zone Observatory program


http://www.soiltrec.eu/
http://rnbv.ipgp.fr/
http://teodoor.icg.kfa-juelich.de/overview-de

Using a Critical Zone Observatory Network to
explore the architecture, dynamics and evolution
of the Critical Zone

Susan L. Brantley, Penn State University
Bill Dietrich, University of California, Berkeley
Jon Chorover, University of Arizona
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Outline of our presentation

e Introduction to the CZO Network
e Cross-site questions that are emerging

e Common measurements that comprise the network



The Critical Zone is the part of the earth surface extending from
outer vegetation canopy to groundwater. It is controlled by a
complex network of coupled chemical-physical-biological processes
that evolve over timescales from seconds to millenia:

' Properties that emerge as the system approaches steady state '
over longer timescales

Water,
energy,
solute, and

dust input ET Surface
rates runoff Slope and
Curvature

Sediment
flux

Lithology and Regolith Time-
structural P Water thickness integrated,
characteristics table and long-term
position character denudation

t ’ rate

Water,
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gradients

l Rates and properties that are ﬂ

affected by humans

When observed over different timeframes,
different steady states may emerge where rates balance



But everyone’s picture of this diagram is different!

' Properties that emerge as the system approaches steady state '

over longer timescales

What we agree on:

1. The critical zone evolves a structure that influences the
storage and flux of water, solutes, sediments, gases, biota
and energy.

2. By mediating these stores and fluxes, the critical zone

provides ecosystem services, and is thus critical to people.

-_—
l Rates and properties that are d

affected by humans

When observed over different timeframes,
different steady states may emerge where rates balance



Three General Questions

1. What controls critical zone properties and processes?

2.  What will be the response of the critical zone structure,
and its stores and fluxes, to climate and land use change?

3. How can improved understanding of the critical zone be
used to enhance ecosystem services?



A Critical Zone Observatory is a location chosen to develop greater
understanding of the architecture, dynamics, and evolution of the CZ




Each CZO measures landforms, surveys biota, samples and analyzes earth
surface materials, makes measurements of all relevant fluxes, collects and
analyzes data from sensors, measures human impacts, performs
experiments...this requires measurements at all spatial scales with expertise
from all earth surface disciplines
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We are organizing these disparate datasets for others
to use — outside of CZOs and across disciplines
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CZOs are also synthesizing the data and observations and developing
and testing models of earth surface processes

Anthropogenic
Forcing

|

CO,
Consumption

Erosion
and
Exhumation

Physical
Processes

Modelling the

Interpreting the
Record



Anderson et al., 2004

Perhaps what really distinguishes CZO research is that it not only
crosses spatial scales and disciplines, but also asks the question, can
we relate today’s fluxes to the records of those fluxes in the past?




Each CZO can only provide data for one environment:
we need to understand these complex, coupled earth surface
processes across all of Earth’s environments
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A conceptual model for the
CZ0O network ' -
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A growing international network (this
is an incomplete list)

-US National Critical Zone Observatory (+CZONQ) program

-European Commission SoilTrEC (Soil Transformations in
European Catchments)

-French RBV (Réseau des bassins versants— Network of
River Basins)

- French Critex (Critical Zone Programme of Excellence)

-Chinese Critical Zone Observatory program (announced
Sept 2012)

-TERENO and AquaDiva (Germany)

- Evolving in Australia in part based on TERN Supersites




Understanding today’s CZO network

% NSF-Funded Critical Zone Observatories

Not an easy diagram to
make! We include CZOs,
some “subsites,” some
SoilTrec sites, to show
how to think about the
population of sites.

See, also “SiteSeeker”
on czen.org



We see the CZO Network as an audacious experiment to use the CZ as
a “time telescope” that looks into the present and past to drive
development of “earthcasting” models to project the future
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So what is the CZO network?
It is a network of people,
iIdeas, data, tools, and models driven by hypotheses.

We do both science and monitoring

We act as both individual sites and as a
network

We have cross-cutting questions but we also
compete with different ideas and approaches

We are a facility that invites new scientists for
their science but we also pursue our own
science



Data gathering

Cross-site and cross- Dm&ﬁ%@%ﬁﬁ'
e R Skt
SNorkses

discipline hypotheses Data sharing

Model development, testing,
and refinement

The Science of CZO Research




CZ0 Mission:

( ) * Learn to measure the earth
surface fluxes occurring today

 Learn to read the geological
record of the cumulative effect of
these fluxes over time

Atmosphere

e Develop quantitative models of
Critical Zone evolution

Sediments

Lithosphere
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CZ0O Mission:
C———% e Learn to measure the earth

surface fluxes occurring today

 Learn to read the geological
record of the cumulative effect of
these fluxes over time

* Develop quantitative models of
Critical Zone evolution

CZ0 Vision:

By measuring what is happening today
and reading the record of what
happened yesterday, we will learn to
use scenarios of human behavior to
project what will happen tomorrow

Aquifers
Lithosphere
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Common Questions of the Critical Zone Observatories
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Understanding Reading the
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CRITICAL ZONE

The Boulder Creek CZO

BcCZO aims to understand how CZ
architecture evolves over time, how it
conditions hydrologic and biogeochemical
response and ecosystem structure, and
how it will respond to future changes in
climate. We document critical zone
architecture, and study denudation
processes, weathering front advance, and
hydro-biogeochemical coupling.
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Millennial

Century

Feedbacks across time scales: regolith-
atmosphere coupling along elevation transect

i g The Southern Sierra CZO
N

= Key hypothesis: To predict how
v water budgets and vegetation will
respond to climate warming, land
management and disturbance, it is
crucial to understand how
vegetation, long-term climate and
parent material jointly regulate the
co-evolution of regolith properties
and ecosystem structure and
function
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1) knickpoints and landscape position The Luqui"O CZ0

influence the weathering, soil development,
and biogeochemical cycling, 2) local and
intense redox fluctuations and mineral
weathering influence on C and nutrient
retention and loss, 3) local sediment
production to streams and peak flow events
influence transport of sediment, C, and
nutrients, 4) scaling up and local and short-
lived events in climate and hydrologic models

Key Question: Do specific locations
or time periods of significant activity
disproportionately impact the
weathering, biogeochemical cycling,
hydrologic processes, and
atmospheric inputs that drive
landscape evolution and CZ function
in a humid tropical forest?
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Key Questions:

Does lithology control rock moisture
availability to plants and therefore overall
resilience of vegetation to climate change
in seasonally dry environments?

How are solute and gas effluents from
hillslopes influenced by biota in changing
moisture regimes?

What controls the spatial extent of wetted
channels in the channel networks of
seasonally dry environments?

Will changes in critical zone currencies
induced by climate or land use change
lead to threshold-type switches in river
and coastal ecosystems

The Eel River CZO

Through intensive field monitoring in the
critical zone the ERCZO will follow the
watershed currencies - water, solutes,
gases, sediment, biota, energy and
momentum - through a subsurface
physical environment and microbial
ecosystem into the terrestrial ecosystem,
up into the atmosphere, and out
through diverse drainage channel
networks in which agquatic ecosystems
interact with these currencies, mediating
the delivery of nutrients to coastal
ecosystems at the river mouth
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CRITICAL ZONE: CANOPY TO GROUNDWATER

The Reynolds Creek CZO

Key hypothesis: soil environmental variables
(e.g. soil water content, soil temperature, net
water flux) measured and modeled at the
pedon and watershed scale will improve our
understanding and prediction of soil carbon
storage, flux, and processes.
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The Cristina River Basin CZO

Hypotheses:

1) Hydrological, chemical, & biological
processes that produce and mix
mineral surfaces and organic carbon
are rate limiting to watershed-scale
chemical weathering, soil production
& carbon sequestration.

2) Humans accelerate rates of carbon-
mineral mixing, resulting in
anthropogenic carbon sequestration
significant to local, regional & global
budgets
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Depth (m)

The Calhoun CZO

The Calhoun CZO seeks to
understand how Earth’s Critical
Zones (CZ) respond to severe soil
erosion and land degradation.

Key hypothesis: the impressive
ses | reforestation masks fundamental

geomorphology, biology, and
biogeochemistry and that post-

.| disturbance CZ evolution may not
. so much recover as restabilize in
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Critical Zone Observatory for
Intensively Managed

Landscapes (IML-CZO)

Key Hypothesis: Critical zone of IMLs has
passed a tipping point resulting from human
modification, and has gradually shifted from
being a transformer with high nutrient, water,
and sediment storage to being a transporter
with low nutrient, water and sediment storage.

System is in dis-equilibrium and maintained
JLppe s g so due to anthropogenic activities
Driven by event dynamics rather than
2~ A seasonal/annual averages

A central research focus is the scaling up of
process understanding from the plot, to the
hillslope, to small basin and, ultimately, to
the large watershed.
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Shared conceptual framework that motivates questions

1. The critical zone evolves a structure that influences the storage and
flux of water, solutes, sediments, gases, biota and energy.

2. By mediating these stores and fluxes, the critical zone provides
ecosystem services, and is thus critical to people.

Here “structure” generally refers to material properties of the
critical zone, including vertical and lateral variation in porosity,
permeability, fracture characteristics, water retention, density,
composition, and texture (size distribution). The critical zone also
includes the vegetation mantle. The flux through and out of the
critical zone connects it to the atmosphere and to the river ecosystems
which receives its drainage.

“Ecosystem services” as considered in these CZ0Os include carbon
storage, water supply, nutrients, vegetation growth, and functional
forest and river ecosystems.



Three general shared questions:
1. What controls critical zone properties and processes?

2. What will be the response of the critical zone structure, and its
stores and fluxes, to climate and land use change?

3. How can improved understanding of the critical zone be used to
enhance ecosystem services?

Intensive field measurements at the observatories will provide the
data to guide process understanding to develop models that explain
critical zone evolution, to forecast possible future states, and to guide
land use decisions. All of the CZO’s have modeling components, though
a wide range of approaches is used.

We have identified about ~21 sub-questions being
investigated at multiple CZO’s!



Four example questions are:
How does the critical zone development depend on lithology?

How does hillslope aspect, as it influences local climate, affect
critical zone evolution and structure?

How do biota influence solutes and gas fluxes from the critical
zone?

How will critical zone processes mediate the effects of climate
change on water resources?



Models under development include:

1) Mechanistic representation of fracture flow and rock
moisture dynamics in hydrologic models

2) Linking vegetation species composition to critical zone
properties

3) Linking the critical zone to atmospheric processes

4) Linking water runoff from the critical zone to flow in
rivers

5) Reactive transport modeling and critical zone
development

6) Landscape evolution modeling, including effects of
critical zone development



The CZ0O’s identified emergent themes from the common
guestions that are leading to across CZO working groups,
topics include:

a. Critical zone (CZ) properties and processes : depth to fresh bedrock

b. Modeling climate and fluxes in the CZ

c. CZ controls on solute concentration - river discharge
relationships

d. CZ control on water available to plants

e. Organic matter in the critical zone

f. Biogeochemical processes in the CZ

g. lron mobilization and precipitation in the CZ

h. The use of isotopes to track processes and rates in the CZ

i. Ecosystem services provided by the CZ

j. International CZOs



Context for common measurements

Each CZO proposal has unique hypotheses and
experimental designs.

But an overarching goal of the CZO network is for the
whole to be greater than the sum of its parts.

Several mechanisms to achieve this including X-CZO

questions, working groups, campaigns, modeling.

Another is through a subset of “Common Measurements”
— Enable testing of (new) hypotheses across a wider

climate, lithology, age parameter space than possible in one
CZO.
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All CZOs seek to develop a common set of
measurements to quantify:

* CZ architecture
— 3D spatial distribution of bedrock, soil,
vegetation, topography (
— Chemical depletion/enrichment, microbial
zonation

— Porosity and flowpaths

* (CZ dynamics

— Event-based and continuous fluxes of
energy, sediments, water, solutes, and gases
across CZ interfaces

— Changes in storage (i.e., budgets) of major
reservoirs at the catchment scale weathering

\ front advance

e (CZ evolution |

— Regolith and drainage valley formation,
bedrock fracturing, soil production, i
geochemical differentiation, erosion, uplit

deposition Anderson et al. (2007)

CRITICAL ZONE




Common approaches to surface architecture:
Bare earth to canopy via LiDAR

+ Valles Caldera National Preserve
+ Santa Catalina Mountains
» Pinalefio Mountains
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Subsurface architecture: soil mapping
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Subsurface architecture: Microbial
diversity and abundance with depth

A. Archaea B. Acidobacteria C. Actinobacteria D. Bacteroidetes
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Subsurface architecture

Geophysical Methods (e.g., SR, GPR, ERT)
incl. collaborations with WyCEHG
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Depth (meters BLS)

Subsurface architecture
Geochemical Methods
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Dynamics: Land-Atmosphere Exchange
Water balance - Kings R. Basin
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Dynamics: Microbial activity with depth
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Dynamics: Aqueous Geochemistry and
Sediment Transport
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Further info on CZO0 common
measurements

e Common Measurements Document available on the CZO
network website

* Ongoing X-CZO collaborations on
— LiDAR analysis
— Geophysical methods
— Sensor networks
— Sample identification, handling and analysis
— Lab exchanges and core analytical facilities for specific analyses



Common measurements of
architecture and dynamics are linked
through models of CZ evolution

Evolution
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